Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA.
Canon Stroke and Vascular Research Center, Buffalo, New York, USA.
Med Phys. 2024 Nov;51(11):8192-8212. doi: 10.1002/mp.17357. Epub 2024 Aug 28.
Intraoperative 2D quantitative angiography (QA) for intracranial aneurysms (IAs) has accuracy challenges due to the variability of hand injections. Despite the success of singular value decomposition (SVD) algorithms in reducing biases in computed tomography perfusion (CTP), their application in 2D QA has not been extensively explored. This study seeks to bridge this gap by investigating the potential of SVD-based deconvolution methods in 2D QA, particularly in addressing the variability of injection durations.
Building on the identified limitations in QA, the study aims to adapt SVD-based deconvolution techniques from CTP to QA for IAs. This adaptation seeks to capitalize on the high temporal resolution of QA, despite its two-dimensional nature, to enhance the consistency and accuracy of hemodynamic parameter assessment. The goal is to develop a method that can reliably assess hemodynamic conditions in IAs, independent of injection variables, for improved neurovascular diagnostics.
The study included three internal carotid aneurysm (ICA) cases. Virtual angiograms were generated using computational fluid dynamics (CFD) for three physiologically relevant inlet velocities to simulate contrast media injection durations. Time-density curves (TDCs) were produced for both the inlet and aneurysm dome. Various SVD variants, including standard SVD (sSVD) with and without classical Tikhonov regularization, block-circulant SVD (bSVD), and oscillation index SVD (oSVD), were applied to virtual angiograms. The method was applied on virtual angiograms to recover the aneurysmal dome impulse response function (IRF) and extract flow related parameters such as Peak Height PH, Area Under the Curve AUC, and Mean transit time MTT. Next, correlations between QA parameters, injection duration, and inlet velocity were assessed for unconvolved and deconvolved data for all SVD methods. Additionally, we performed an in vitro study, to complement our in silico investigation. We generated a 2D DSA using a flow circuit design for a patient-specific internal carotid artery phantom. The DSA showcases factors like x-ray artifacts, noise, and patient motion. We evaluated QA parameters for the in vitro phantoms using different SVD variants and established correlations between QA parameters, injection duration, and velocity for unconvolved and deconvolved data.
The different SVD algorithm variants showed strong correlations between flow and deconvolution-adjusted QA parameters. Furthermore, we found that SVD can effectively reduce QA parameter variability across various injection durations, enhancing the potential of QA analysis parameters in neurovascular disease diagnosis and treatment.
Implementing SVD-based deconvolution techniques in QA analysis can enhance the precision and reliability of neurovascular diagnostics by effectively reducing the impact of injection duration on hemodynamic parameters.
由于手动注射的可变性,颅内动脉瘤(IA)术中的 2D 定量血管造影(QA)存在准确性挑战。尽管奇异值分解(SVD)算法在减少计算机断层灌注(CTP)中的偏差方面取得了成功,但它们在 2D QA 中的应用尚未得到广泛探索。本研究旨在通过研究基于 SVD 的去卷积方法在 2D QA 中的潜力来弥补这一空白,特别是在解决注射持续时间变化方面。
在 QA 中已确定的局限性的基础上,本研究旨在将基于 SVD 的去卷积技术从 CTP 应用于 IA 的 QA。这种适应旨在利用 QA 的高时间分辨率,尽管它是二维的,以增强血液动力学参数评估的一致性和准确性。目标是开发一种能够独立于注射变量可靠评估 IA 中血液动力学条件的方法,以改善神经血管诊断。
本研究包括三个颈内动脉动脉瘤(ICA)病例。使用计算流体动力学(CFD)为三种生理相关的入口速度生成虚拟血管造影,以模拟对比介质注射持续时间。为入口和动脉瘤穹顶产生时间密度曲线(TDC)。应用了各种 SVD 变体,包括具有和不具有经典 Tikhonov 正则化的标准 SVD(sSVD)、块循环 SVD(bSVD)和振荡指数 SVD(oSVD),以应用于虚拟血管造影。该方法应用于虚拟血管造影以恢复动脉瘤穹顶脉冲响应函数(IRF),并提取与流量相关的参数,如峰值高度 PH、曲线下面积 AUC 和平均通过时间 MTT。接下来,评估了所有 SVD 方法的未卷积和去卷积数据中 QA 参数与注射持续时间和入口速度之间的相关性。此外,我们进行了一项体外研究,以补充我们的体内研究。我们使用针对特定患者的颈内动脉体模的流动回路设计生成了 2D DSA。DSA 展示了 X 射线伪影、噪声和患者运动等因素。我们使用不同的 SVD 变体评估了体外体模的 QA 参数,并建立了未卷积和去卷积数据中 QA 参数与注射持续时间和速度之间的相关性。
不同的 SVD 算法变体在流量和去卷积调整的 QA 参数之间显示出很强的相关性。此外,我们发现 SVD 可以有效地降低跨各种注射持续时间的 QA 参数变异性,从而提高 QA 分析参数在神经血管疾病诊断和治疗中的潜力。
在 QA 分析中实施基于 SVD 的去卷积技术可以通过有效降低注射持续时间对血液动力学参数的影响来提高神经血管诊断的精度和可靠性。