Suppr超能文献

使用BERT语言模型改进投票建议应用程序的设计。

Enhancing the design of voting advice applications with BERT language model.

作者信息

Buryakov Daniil, Kovacs Mate, Serdült Uwe, Kryssanov Victor

机构信息

e-Society Laboratory, College of Information Science and Engineering, Ritsumeikan University, Osaka, Japan.

Digital Governance Systems Laboratory, College of Information Science and Engineering, Ritsumeikan University, Osaka, Japan.

出版信息

Front Artif Intell. 2024 Aug 6;7:1343214. doi: 10.3389/frai.2024.1343214. eCollection 2024.

Abstract

The relevance and importance of voting advice applications (VAAs) are demonstrated by their popularity among potential voters. On average, around 30% of voters take into account the recommendations of these applications during elections. The comparison between potential voters' and parties' positions is made on the basis of VAA policy statements on which users are asked to express opinions. VAA designers devote substantial time and effort to analyzing domestic and international politics to formulate policy statements and select those to be included in the application. This procedure involves manually reading and evaluating a large volume of publicly available data, primarily party manifestos. A problematic part of the work is the limited time frame. This study proposes a system to assist VAA designers in formulating, revising, and selecting policy statements. Using pre-trained language models and machine learning methods to process politics-related textual data, the system produces a set of suggestions corresponding to relevant VAA statements. Experiments were conducted using party manifestos and YouTube comments from Japan, combined with VAA policy statements from six Japanese and two European VAAs. The technical approaches used in the system are based on the BERT language model, which is known for its capability to capture the context of words in the documents. Although the output of the system does not completely eliminate the need for manual human assessment, it provides valuable suggestions for updating VAA policy statements on an objective, i.e., bias-free, basis.

摘要

投票建议应用程序(VAA)的相关性和重要性体现在其在潜在选民中的受欢迎程度上。平均而言,约30%的选民在选举期间会考虑这些应用程序的建议。潜在选民与政党立场的比较是基于VAA的政策声明进行的,用户需要对这些声明发表意见。VAA的设计者投入了大量时间和精力来分析国内和国际政治,以制定政策声明并选择纳入应用程序的声明。这个过程包括人工阅读和评估大量公开可用的数据,主要是政党宣言。这项工作中存在问题的一部分是时间框架有限。本研究提出了一个系统,以协助VAA设计者制定、修订和选择政策声明。该系统使用预训练语言模型和机器学习方法来处理与政治相关的文本数据,生成一组与相关VAA声明相对应的建议。实验使用了来自日本的政党宣言和YouTube评论,并结合了六个日本VAA和两个欧洲VAA的政策声明。该系统所采用的技术方法基于BERT语言模型,该模型以能够捕捉文档中单词的上下文而闻名。虽然该系统的输出并不能完全消除人工评估的必要性,但它为在客观(即无偏见)的基础上更新VAA政策声明提供了有价值的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ec/11333799/d7f6cf7970aa/frai-07-1343214-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验