Suppr超能文献

一种将铜固定在FeO@EDTA纳米复合材料上的新策略及其在硝基芳烃还原和一锅法还原乙酰化以及芳胺的N-乙酰化中的高效催化应用。

A new strategy for immobilization of copper on the FeO@EDTA nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also -acetylation of arylamines.

作者信息

Mavaddatiyan Leila, Zeynizadeh Behzad

机构信息

Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.

出版信息

Heliyon. 2024 Jul 26;10(15):e35062. doi: 10.1016/j.heliyon.2024.e35062. eCollection 2024 Aug 15.

Abstract

A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct immobilization of copper metal powder on the FeO@EDTA nanocomposite. The as-prepared FeO@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The resulting FeO@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic activity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 °C. Notably, the applied Cu(II)-containing nanocatalyst was efficiently recovered from the reaction mixture using an external magnetic field and could be reused successfully for five cycles. The protocol developed in this study offers several advantages in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy recovery and catalyst reuse, making it more ecologically and economically attractive.

摘要

通过将铜金属粉末直接固定在FeO@EDTA纳米复合材料上,合成了一种新型高效的含铜(II)介孔纳米催化体系。然后通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、基于扫描电子显微镜的能谱分析(EDX)和元素映射、X射线光电子能谱(XPS)、热重分析(TGA)、振动样品磁强计(VSM)以及比表面积和孔径分布分析(BET和BJH分析)对制备的FeO@EDTA@Cu(II)纳米复合材料进行了表征。所得的FeO@EDTA@Cu(II)介孔纳米复合材料在60℃的水中对硝基芳烃的还原和一锅法还原乙酰化以及芳胺的N-乙酰化表现出令人满意的催化活性。值得注意的是,使用外部磁场可以有效地从反应混合物中回收所应用的含铜(II)纳米催化剂,并且可以成功地重复使用五个循环。本研究中开发的方法在温和的反应条件、简单的工作流程、使用水作为绿色溶剂以及易于回收和催化剂重复使用方面具有多个优点,使其在生态和经济上更具吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68dd/11334667/33c1fc1f1111/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验