Suppr超能文献

用于钠离子储能应用的大面积氧化铜薄片的简易制备

Facile Fabrication of Large-Area CuO Flakes for Sodium-Ion Energy Storage Applications.

作者信息

Sun Xiaolei, Luo Feng

机构信息

School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China.

出版信息

Molecules. 2024 May 28;29(11):2528. doi: 10.3390/molecules29112528.

Abstract

CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity loss caused by side reactions during discharge/charge cycles. In this work, we introduce an innovative approach to fabricating large-area CuO and CuO@AlO flakes through a combination of magnetron sputtering, thermal oxidation, and atomic layer deposition techniques. The resultant 2D CuO flakes demonstrate excellent electrochemical properties with a high initial reversible specific capacity of 487 mAh g and good cycling stability, which are attributable to their unique architectures and superior structural durability. Furthermore, when these CuO flakes are coated with an ultrathin AlO layer, the integration of the 2D structures with outer nanocoating leads to significantly enhanced electrochemical properties. Notably, even after 70 rate testing cycles, the CuO@AlO materials maintain a high capacity of 525 mAh g at a current density of 50 mA g. Remarkably, at a higher current density of 2000 mA g, these materials still achieve a capacity of 220 mAh g. Moreover, after 200 cycles at a current density of 200 mA g, a high charge capacity of 319 mAh g is sustained. In addition, a full cell consisting of a CuO@AlO anode and a NaNiFeMnO cathode is investigated, showcasing remarkable cycling performance. Our findings underscore the potential of these innovative flake-like architectures as electrode materials in high-performance sodium-ion batteries, paving the way for advancements in energy storage technologies.

摘要

氧化铜因其多电子转移能力而具有674 mAh g的可观理论容量,被认为是一种很有前景的钠离子电池负极材料。然而,其实际应用受到缓慢的反应动力学以及充放电循环过程中副反应导致的快速容量损失的阻碍。在这项工作中,我们引入了一种创新方法,通过磁控溅射、热氧化和原子层沉积技术相结合来制备大面积的氧化铜和氧化铜@氧化铝薄片。所得的二维氧化铜薄片表现出优异的电化学性能,具有487 mAh g的高初始可逆比容量和良好的循环稳定性,这归因于它们独特的结构和卓越的结构耐久性。此外,当这些氧化铜薄片涂覆有超薄氧化铝层时,二维结构与外部纳米涂层的结合导致电化学性能显著增强。值得注意的是,即使经过70次倍率测试循环后,氧化铜@氧化铝材料在50 mA g的电流密度下仍保持525 mAh g的高容量。显著的是,在2000 mA g的更高电流密度下,这些材料仍能达到220 mAh g的容量。此外,在200 mA g的电流密度下经过200次循环后,仍能维持319 mAh g的高充电容量。此外,还研究了由氧化铜@氧化铝负极和钠镍铁锰氧化物正极组成的全电池,展示了卓越的循环性能。我们的研究结果强调了这些创新的片状结构作为高性能钠离子电池电极材料的潜力,为储能技术的进步铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae2/11174117/6e91514f2a31/molecules-29-02528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验