School of the Environment and Centre for Marine Science, The University of Queensland, Saint Lucia, Queensland, Australia.
WorldFish, Bayan Lepas, Penang, Malaysia.
Microbiologyopen. 2024 Aug;13(4):e1432. doi: 10.1002/mbo3.1432.
The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.
长读测序平台 MinION 由牛津纳米孔技术公司开发,能够在资源有限的环境中(例如野外条件或中低收入国家)对细菌基因组进行测序。为此,需要使用无危险、廉价的试剂和设备提取高分子量 DNA 的方案,并且已经开发了一些针对革兰氏阴性菌的方法。然而,我们发现,如果不进行修改,这些方案不适合革兰氏阳性链球菌属,这是中低收入国家鱼类养殖和食品安全的主要威胁。我们评估了多种方法,其中最有效的方法是使用溶菌酶、十二烷基硫酸钠和蛋白酶 K 裂解细菌细胞,然后使用磁珠回收 DNA 的提取方法。我们优化了该方法,以在最小的试剂和最短的时间内始终获得足够的纯高分子量 DNA 产量,并开发了一种无需离心机或电力即可进行的方案版本。该方法的适用性通过 MinION 测序和 12 个流行病学多样化的鱼类病原菌咽峡炎链球菌和无乳链球菌分离株的基因组组装得到了验证。有效的高分子量 DNA 提取方法与 MinION 测序相结合,使我们能够在咽峡炎链球菌中发现一种自然存在的 15kb 低拷贝数可移动质粒,我们将其命名为 pSI1。我们预计,我们针对资源有限环境优化的高分子量 DNA 提取方案可以成功应用于同样难以裂解的革兰氏阳性细菌,并且它代表了在中低收入国家基于 MinION 的疾病诊断的首选方法。