Suppr超能文献

电解质中分子微观不均一性的调控实现了安时级水系LiMnO||LiTiO软包电池。

Regulation of Molecular Microheterogeneity in Electrolytes Enables Ampere-Hour-Level Aqueous LiMnO||LiTiO Pouch Cells.

作者信息

Zhang Canfu, Chen Binbin, Chen Qinlong, Liu Yingchun, Kong Xueqian, Suo Liumin, Lu Jun, Pan Huilin

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.

出版信息

Adv Mater. 2024 Oct;36(40):e2405913. doi: 10.1002/adma.202405913. Epub 2024 Aug 21.

Abstract

Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of HO limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D) molecular microheterogeneity with HO-rich and HO-poor domains is demonstrated. HO-poor domains molecularly surround the reformed microclusters of HO molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of HO but also allow fast and consecutive Li transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm. LiMnO||LiTiO full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20 °C. 1 Ah pouch cell delivers a high energy density of 79.3 Wh kg and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.

摘要

水系电池因其高安全性和快速反应动力学而备受关注,但水的电化学稳定性窗口较窄限制了其应用。在保持快速反应动力学的同时拓宽水系电解质的电化学操作窗口是一项巨大挑战。在此,展示了一种具有富水和贫水区域的可操控三维分子微观非均相性的新型有机水系混合电解质。贫水区域通过界面氢键在分子层面包围水重整后的微团簇,这不仅抑制了水的长程传输,还允许锂离子快速连续传输。这种新设计使低压阳极能够与水系电解质可逆循环,离子电导率高达4.5 mS/cm。LiMnO||LiTiO全电池在各种C倍率和-20°C低温下1000次循环中表现出优异的循环稳定性。1 Ah软包电池在1 C倍率下200次循环中提供了79.3 Wh/kg的高能量密度和99.4%的高库仑效率。这项工作为基于分子微观非均相性的可充电电池电解质设计提供了新见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验