Xu Zheng, Xiang Bo, Liu Chunli, Sun Yunpo, Xie Jian, Tu Jian, Xu Xiongwen, Zhao Xinbing
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
Huayou New Energy Technology (Quzhou) Co., Ltd. Quzhou 324000 P. R. China.
RSC Adv. 2021 Sep 13;11(48):30383-30391. doi: 10.1039/d1ra05369h. eCollection 2021 Sep 6.
Although rechargeable aqueous batteries are attracting increasing attention in recent years due to high safety, low cost, high power density and environmental friendliness, the aqueous batteries suffer from limited cycle life due to a narrow electrochemical window of the aqueous electrolytes, severe side reaction and instability of electrode materials in aqueous electrolytes. In this work, we propose a hybrid aqueous electrolyte with a mixed solvent of water and acetonitrile (ACN), which exhibits a wide electrochemical window, high ionic conductivity, and nonflammability. An aqueous battery with an iron hexacyanoferrate (FeHCF) cathode, Zn anode and HO/ACN hybrid electrolyte shows a high capacity of 69.1 mA h g at 10C (89.5% relative to that at 1C) and an extremely long cycle life with 51.4% capacity retention after 19 000 cycles at 10C. The excellent cycling performance of the aqueous FeHCF/Zn batteries can be attributed to the reduced water activity and extended electrochemical window because of the strong hydrogen-bonding interaction between ACN and HO. Besides, the large particle size and good crystallization of FeHCF can inhibit its dissolution in the aqueous electrolyte which further improves cycling performance. This work will shed light on the design of safe aqueous batteries for applications in large-scale energy storage.
尽管近年来可充电水系电池因其高安全性、低成本、高功率密度和环境友好性而受到越来越多的关注,但由于水系电解质的电化学窗口较窄、严重的副反应以及电极材料在水系电解质中的不稳定性,水系电池的循环寿命有限。在这项工作中,我们提出了一种由水和乙腈(ACN)混合溶剂组成的混合水系电解质,它具有宽电化学窗口、高离子电导率和不可燃性。一种具有铁氰化铁(FeHCF)阴极、锌阳极和HO/ACN混合电解质的水系电池在10C时显示出69.1 mA h g的高容量(相对于1C时的容量为89.5%),并且在10C下经过19000次循环后具有51.4%的容量保持率,循环寿命极长。水系FeHCF/Zn电池优异的循环性能可归因于ACN与HO之间强烈的氢键相互作用导致水活性降低和电化学窗口扩大。此外,FeHCF的大粒径和良好的结晶性可以抑制其在水系电解质中的溶解,这进一步提高了循环性能。这项工作将为大规模储能应用中安全水系电池的设计提供启示。