Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China.
Mol Ecol. 2024 Sep;33(18):e17504. doi: 10.1111/mec.17504. Epub 2024 Aug 21.
The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.
维纳斯捕蝇海葵 Actinoscyphia liui 栖息在热带西太平洋营养有限的深海中。与大多数其他海葵相比,它的身体形状发生了明显的变化,类似于植物捕蝇草。然而,这种奇特的海葵适应深海贫营养环境的分子机制尚不清楚。在这里,我们报道了 A. liui 的染色体水平基因组,该基因组是使用 PacBio 和 Hi-C 数据构建的。组装的基因组大小为 522Mb,具有 58.4Mb 的连续支架 N50。与大多数其他海葵通常每个单倍型具有 14-18 条染色体不同,A. liui 只有 11 条。染色体数量的减少与染色体融合有关,这可能是一种在贫营养深海环境中节约能量的适应策略。与其他深海海葵的比较分析表明,与细胞自噬(TMBIM6、 SESN1、SCOCB 和 RPTOR)和线粒体能量代谢(MDH1B 和 KAD2)相关的基因发生了适应性进化,这可能有助于 A. liui 应对严重的食物匮乏。同时,该基因组在与快速突触传递相关的基因家族中经历了至少两轮扩张,促进了对水流和猎物的快速反应。对肌肉收缩相关蛋白的假定磷酸化位点进行了正选择,可能进一步提高了摄食效率。总的来说,本研究为深入了解深海贫营养环境下的分子适应机制提供了线索,并揭示了新形态对刺胞动物进化的潜在影响。