Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Cancer Med. 2024 Aug;13(16):e70112. doi: 10.1002/cam4.70112.
Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consuming and expensive high-throughput sequencing methods severely limit their clinical applicability. Predicting intratumoral heterogeneity poses significant challenges in biology and clinical settings. Our aimed to develop a self-supervised attention-based multiple instance learning (SSL-ABMIL) model to predict TMB and VHL mutation status from hematoxylin and eosin-stained histopathological images.
We obtained whole slide images (WSIs) and somatic mutation data of 350 ccRCC patients from The Cancer Genome Atlas for developing SSL-ABMIL model. In parallel, 163 ccRCC patients from Clinical Proteomic Tumor Analysis Consortium cohort was used as independent external validation set. We systematically compared three different models (Wang-ABMIL, Ciga-ABMIL, and ImageNet-MIL) for their ability to predict TMB and VHL alterations.
We first identified two groups of populations with high- and low-TMB (cut-off point = 0.9). In two independent cohorts, the Wang-ABMIL model achieved the highest performance with decent generalization performance (AUROC = 0.83 ± 0.02 and 0.8 ± 0.04 in predicting TMB and VHL, respectively). Attention heatmaps revealed that the Wang-ABMIL model paid the highest attention to tumor regions in high-TMB patients, while in VHL mutation prediction, non-tumor regions were also assigned high attention, particularly the stromal regions infiltrated by lymphocytes.
Our results indicated that SSL-ABMIL can effectively extract histological features for predicting TMB and VHL mutation, demonstrating promising results in linking tumor morphology and molecular biology.
肿瘤突变负担(TMB)和 VHL 突变在透明细胞肾细胞癌(ccRCC)患者的管理中起着至关重要的作用,例如指导辅助化疗和改善临床结局。然而,耗时且昂贵的高通量测序方法严重限制了其临床适用性。预测肿瘤内异质性在生物学和临床环境中都具有挑战性。我们旨在开发一种基于自监督注意力的多实例学习(SSL-ABMIL)模型,以从苏木精和伊红染色的组织病理学图像中预测 TMB 和 VHL 突变状态。
我们从癌症基因组图谱(TCGA)获得了 350 例 ccRCC 患者的全切片图像(WSI)和体细胞突变数据,用于开发 SSL-ABMIL 模型。同时,还使用来自临床蛋白质组肿瘤分析联盟队列的 163 例 ccRCC 患者作为独立的外部验证集。我们系统地比较了三种不同的模型(Wang-ABMIL、Ciga-ABMIL 和 ImageNet-MIL)在预测 TMB 和 VHL 改变方面的能力。
我们首先鉴定了两组高 TMB(截断点=0.9)和低 TMB 患者。在两个独立的队列中,Wang-ABMIL 模型的表现最佳,具有良好的泛化性能(分别在预测 TMB 和 VHL 中的 AUC 值为 0.83±0.02 和 0.8±0.04)。注意力热图显示,Wang-ABMIL 模型对高 TMB 患者的肿瘤区域给予了最高的关注,而在 VHL 突变预测中,非肿瘤区域也被赋予了较高的关注,特别是淋巴细胞浸润的间质区域。
我们的结果表明,SSL-ABMIL 可以有效地提取组织学特征来预测 TMB 和 VHL 突变,在将肿瘤形态与分子生物学联系起来方面显示出有前景的结果。