Suppr超能文献

利用自监督深度学习技术从肾癌病理切片中预测肿瘤突变负荷和 VHL 突变。

Predicting tumor mutation burden and VHL mutation from renal cancer pathology slides with self-supervised deep learning.

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

出版信息

Cancer Med. 2024 Aug;13(16):e70112. doi: 10.1002/cam4.70112.

Abstract

BACKGROUND

Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consuming and expensive high-throughput sequencing methods severely limit their clinical applicability. Predicting intratumoral heterogeneity poses significant challenges in biology and clinical settings. Our aimed to develop a self-supervised attention-based multiple instance learning (SSL-ABMIL) model to predict TMB and VHL mutation status from hematoxylin and eosin-stained histopathological images.

METHODS

We obtained whole slide images (WSIs) and somatic mutation data of 350 ccRCC patients from The Cancer Genome Atlas for developing SSL-ABMIL model. In parallel, 163 ccRCC patients from Clinical Proteomic Tumor Analysis Consortium cohort was used as independent external validation set. We systematically compared three different models (Wang-ABMIL, Ciga-ABMIL, and ImageNet-MIL) for their ability to predict TMB and VHL alterations.

RESULTS

We first identified two groups of populations with high- and low-TMB (cut-off point = 0.9). In two independent cohorts, the Wang-ABMIL model achieved the highest performance with decent generalization performance (AUROC = 0.83 ± 0.02 and 0.8 ± 0.04 in predicting TMB and VHL, respectively). Attention heatmaps revealed that the Wang-ABMIL model paid the highest attention to tumor regions in high-TMB patients, while in VHL mutation prediction, non-tumor regions were also assigned high attention, particularly the stromal regions infiltrated by lymphocytes.

CONCLUSIONS

Our results indicated that SSL-ABMIL can effectively extract histological features for predicting TMB and VHL mutation, demonstrating promising results in linking tumor morphology and molecular biology.

摘要

背景

肿瘤突变负担(TMB)和 VHL 突变在透明细胞肾细胞癌(ccRCC)患者的管理中起着至关重要的作用,例如指导辅助化疗和改善临床结局。然而,耗时且昂贵的高通量测序方法严重限制了其临床适用性。预测肿瘤内异质性在生物学和临床环境中都具有挑战性。我们旨在开发一种基于自监督注意力的多实例学习(SSL-ABMIL)模型,以从苏木精和伊红染色的组织病理学图像中预测 TMB 和 VHL 突变状态。

方法

我们从癌症基因组图谱(TCGA)获得了 350 例 ccRCC 患者的全切片图像(WSI)和体细胞突变数据,用于开发 SSL-ABMIL 模型。同时,还使用来自临床蛋白质组肿瘤分析联盟队列的 163 例 ccRCC 患者作为独立的外部验证集。我们系统地比较了三种不同的模型(Wang-ABMIL、Ciga-ABMIL 和 ImageNet-MIL)在预测 TMB 和 VHL 改变方面的能力。

结果

我们首先鉴定了两组高 TMB(截断点=0.9)和低 TMB 患者。在两个独立的队列中,Wang-ABMIL 模型的表现最佳,具有良好的泛化性能(分别在预测 TMB 和 VHL 中的 AUC 值为 0.83±0.02 和 0.8±0.04)。注意力热图显示,Wang-ABMIL 模型对高 TMB 患者的肿瘤区域给予了最高的关注,而在 VHL 突变预测中,非肿瘤区域也被赋予了较高的关注,特别是淋巴细胞浸润的间质区域。

结论

我们的结果表明,SSL-ABMIL 可以有效地提取组织学特征来预测 TMB 和 VHL 突变,在将肿瘤形态与分子生物学联系起来方面显示出有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bee/11336896/c960abb99e72/CAM4-13-e70112-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验