Suppr超能文献

通过纳入突变对配体结合的影响改进蛋白质中稳定突变的预测。

Improved Prediction of Stabilizing Mutations in Proteins by Incorporation of Mutational Effects on Ligand Binding.

作者信息

Ganesan Srivarshini, Mittal Nidhi, Bhat Akash, Adiga Rachana S, Ganesan Ananthakrishnan, Nagarajan Deepesh, Varadarajan Raghavan

机构信息

Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India.

Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru, India.

出版信息

Proteins. 2025 Jan;93(1):384-395. doi: 10.1002/prot.26738. Epub 2024 Aug 21.

Abstract

While many computational methods accurately predict destabilizing mutations, identifying stabilizing mutations has remained a challenge, because of their relative rarity. We tested ΔΔG predictions from computational predictors such as Rosetta, ThermoMPNN, RaSP, and DeepDDG, using 82 mutants of the bacterial toxin CcdB as a test case. On this dataset, the best computational predictor is ThermoMPNN, which identifies stabilizing mutations with a precision of 68%. However, the average increase in T for these predicted mutations was only 1°C for CcdB, and predictions were poorer for a more challenging target, influenza neuraminidase. Using data from multiple previously described yeast surface display libraries and in vitro thermal stability measurements, we trained logistic regression models to identify stabilizing mutations with a precision of 90% and an average increase in T of 3°C for CcdB. When such libraries contain a population of mutants with significantly enhanced binding relative to the corresponding wild type, there is no benefit in using computational predictors. It is then possible to predict stabilizing mutations without any training, simply by examining the distribution of mutational binding scores. This avoids laborious steps of in vitro expression, purification, and stability characterization. When this is not the case, combining data from computational predictors with high-throughput experimental binding data enhances the prediction of stabilizing mutations. However, this requires training on stability data measured in vitro with known stabilized mutants. It is thus feasible to predict stabilizing mutations rapidly and accurately for any system of interest that can be subjected to a binding selection or screen.

摘要

虽然许多计算方法能够准确预测使蛋白不稳定的突变,但由于稳定突变相对罕见,识别它们仍然是一项挑战。我们以细菌毒素CcdB的82个突变体为测试案例,测试了来自Rosetta、ThermoMPNN、RaSP和DeepDDG等计算预测工具的ΔΔG预测结果。在这个数据集上,最佳的计算预测工具是ThermoMPNN,它识别稳定突变的精度为68%。然而,对于CcdB来说,这些预测突变的T平均仅增加1°C,对于更具挑战性的目标流感神经氨酸酶,预测效果更差。利用多个先前描述的酵母表面展示文库的数据以及体外热稳定性测量结果,我们训练了逻辑回归模型,以90%的精度识别稳定突变,且对于CcdB,T平均增加3°C。当此类文库包含相对于相应野生型具有显著增强结合能力的突变体群体时,使用计算预测工具并无益处。此时,仅通过检查突变结合分数的分布,无需任何训练就有可能预测稳定突变。这避免了体外表达、纯化和稳定性表征等繁琐步骤。当情况并非如此时,将计算预测工具的数据与高通量实验结合数据相结合,可提高对稳定突变的预测。然而,这需要使用已知稳定突变体的体外测量稳定性数据进行训练。因此,对于任何可进行结合选择或筛选的感兴趣系统,快速准确地预测稳定突变都是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验