Suppr超能文献

基于多参数磁共振成像的深度学习影像组学模型用于评估非肌层浸润性膀胱癌的5年复发风险

Multiparametric MRI-Based Deep Learning Radiomics Model for Assessing 5-Year Recurrence Risk in Non-Muscle Invasive Bladder Cancer.

作者信息

Huang Haolin, Huang Yiping, Kaggie Joshua D, Cai Qian, Yang Peng, Wei Jie, Wang Lijuan, Guo Yan, Lu Hongbing, Wang Huanjun, Xu Xiaopan

机构信息

School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.

出版信息

J Magn Reson Imaging. 2025 Mar;61(3):1442-1456. doi: 10.1002/jmri.29574. Epub 2024 Aug 21.

Abstract

BACKGROUND

Accurately assessing 5-year recurrence rates is crucial for managing non-muscle-invasive bladder carcinoma (NMIBC). However, the European Organization for Research and Treatment of Cancer (EORTC) model exhibits poor performance.

PURPOSE

To investigate whether integrating multiparametric MRI (mp-MRI) with clinical factors improves NMIBC 5-year recurrence risk assessment.

STUDY TYPE

Retrospective.

POPULATION

One hundred ninety-one patients (median age, 65 years; age range, 54-73 years; 27 females) underwent mp-MRI between 2011 and 2017, and received ≥5-year follow-ups. They were divided into a training cohort (N = 115) and validation/testing cohorts (N = 38 in each). Recurrence rates were 23.5% (27/115) in the training cohort and 23.7% (9/38) in both validation and testing cohorts.

FIELD STRENGTH/SEQUENCE: 3-T, fast spin echo T2-weighted imaging (T2WI), single-shot echo planar diffusion-weighted imaging (DWI), and volumetric spoiled gradient echo dynamic contrast-enhanced (DCE) sequences.

ASSESSMENT

Radiomics and deep learning (DL) features were extracted from the combined region of interest (cROI) including intratumoral and peritumoral areas on mp-MRI. Four models were developed, including clinical, cROI-based radiomics, DL, and clinical-radiomics-DL (CRDL) models.

STATISTICAL TESTS

Student's t-tests, DeLong's tests with Bonferroni correction, receiver operating characteristics with the area under the curves (AUCs), Cox proportional hazard analyses, Kaplan-Meier plots, SHapley Additive ExPlanations (SHAP) values, and Akaike information criterion for clinical usefulness. A P-value <0.05 was considered statistically significant.

RESULTS

The cROI-based CRDL model showed superior performance (AUC 0.909; 95% CI: 0.792-0.985) compared to other models in the testing cohort for assessing 5-year recurrence in NMIBC. It achieved the highest Harrell's concordance index (0.804; 95% CI: 0.749-0.859) for estimating recurrence-free survival. SHAP analysis further highlighted the substantial role (22%) of the radiomics features in NMIBC recurrence assessment.

DATA CONCLUSION

Integrating cROI-based radiomics and DL features from preoperative mp-MRI with clinical factors could improve 5-year recurrence risk assessment in NMIBC.

EVIDENCE LEVEL

3 TECHNICAL EFFICACY: Stage 3.

摘要

背景

准确评估5年复发率对于非肌层浸润性膀胱癌(NMIBC)的管理至关重要。然而,欧洲癌症研究与治疗组织(EORTC)模型的表现不佳。

目的

探讨将多参数MRI(mp-MRI)与临床因素相结合是否能改善NMIBC的5年复发风险评估。

研究类型

回顾性研究。

研究对象

2011年至2017年间,191例患者(中位年龄65岁;年龄范围54 - 73岁;27例女性)接受了mp-MRI检查,并接受了≥5年的随访。他们被分为训练队列(N = 115)和验证/测试队列(各N = 38)。训练队列的复发率为23.5%(27/115),验证队列和测试队列的复发率均为23.7%(9/38)。

场强/序列:3-T,快速自旋回波T2加权成像(T2WI)、单次激发回波平面扩散加权成像(DWI)和容积扰相梯度回波动态对比增强(DCE)序列。

评估

从包括mp-MRI上肿瘤内和肿瘤周围区域的联合感兴趣区(cROI)中提取影像组学和深度学习(DL)特征。开发了四个模型,包括临床模型、基于cROI的影像组学模型、DL模型和临床-影像组学-DL(CRDL)模型。

统计检验

学生t检验、经Bonferroni校正的DeLong检验、曲线下面积(AUC)的受试者工作特征分析、Cox比例风险分析、Kaplan-Meier曲线、SHapley加性解释(SHAP)值以及临床实用性的Akaike信息准则。P值<0.05被认为具有统计学意义。

结果

在测试队列中,基于cROI的CRDL模型在评估NMIBC的5年复发方面表现优于其他模型(AUC 0.909;95% CI:0.792 - 0.985)。它在估计无复发生存率方面达到了最高的Harrell一致性指数(0.804;95% CI:0.749 - 0.859)。SHAP分析进一步突出了影像组学特征在NMIBC复发评估中的重要作用(22%)。

数据结论

将术前mp-MRI基于cROI的影像组学和DL特征与临床因素相结合,可以改善NMIBC的5年复发风险评估。

证据水平

3 技术效能:3级

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验