Lin Davy S, Späth Georg, Meng Zhanchao, Wieske Lianne H E, Farès Christophe, Fürstner Alois
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
J Am Chem Soc. 2024 Sep 4;146(35):24250-24256. doi: 10.1021/jacs.4c09467. Epub 2024 Aug 21.
It was recognized only recently that the sister norcembranoids scabrolides A and B have notably different carbotricyclic scaffolds. Therefore, our synthesis route leading to scabrolide A could not be extended to its sibling. Rather, a conceptually new approach had to be devised that relied on a challenging intramolecular alkenylation of a ketone to forge the congested central cycloheptene ring at the bridgehead enone site; the required cyclization precursor was attained by a lanthanide-catalyzed Mukaiyama-Michael addition. The dissonant 1,4-oxygenation pattern was then installed by allylic rearrangement/oxidation of the enone, followed by suprafacial 1,3-transposition. Synthetic scabrolide B was transformed into sinuscalide C by dehydration and into ineleganolide by base-mediated isomerization/oxa-Michael addition, which has potential biosynthetic implications; under basic conditions, the latter compound converts into horiolide by an intricate biomimetic cascade.
直到最近才认识到,诺cembranoid类化合物scabrolides A和B具有明显不同的碳三环骨架。因此,我们合成scabrolide A的路线无法扩展到其同类物。相反,必须设计一种全新的方法,该方法依赖于酮的具有挑战性的分子内烯基化反应,以在桥头烯酮位点构建拥挤的中心环庚烯环;所需的环化前体通过镧系元素催化的 Mukaiyama-Michael加成反应获得。然后通过烯酮的烯丙基重排/氧化,接着进行面内1,3-迁移,安装不一致的1,4-氧合模式。合成的scabrolide B通过脱水转化为sinuscalide C,并通过碱介导的异构化/氧杂-Michael加成反应转化为ineleganolide,这具有潜在的生物合成意义;在碱性条件下,后一种化合物通过复杂的仿生级联反应转化为horiolide。