School of Engineering, University of Guelph, Guelph, Ontario, Canada.
Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.
Med Phys. 2024 Sep;51(9):6134-6148. doi: 10.1002/mp.17242. Epub 2024 Jun 10.
BACKGROUND: Three-dimensional (3D) ultrasound (US) imaging has shown promise in non-invasive monitoring of changes in the lateral brain ventricles of neonates suffering from intraventricular hemorrhaging. Due to the poorly defined anatomical boundaries and low signal-to-noise ratio, fully supervised methods for segmentation of the lateral ventricles in 3D US images require a large dataset of annotated images by trained physicians, which is tedious, time-consuming, and expensive. Training fully supervised segmentation methods on a small dataset may lead to overfitting and hence reduce its generalizability. Semi-supervised learning (SSL) methods for 3D US segmentation may be able to address these challenges but most existing SSL methods have been developed for magnetic resonance or computed tomography (CT) images. PURPOSE: To develop a fast, lightweight, and accurate SSL method, specifically for 3D US images, that will use unlabeled data towards improving segmentation performance. METHODS: We propose an SSL framework that leverages the shape-encoding ability of an autoencoder network to enforce complex shape and size constraints on a 3D U-Net segmentation model. The autoencoder created pseudo-labels, based on the 3D U-Net predicted segmentations, that enforces shape constraints. An adversarial discriminator network then determined whether images came from the labeled or unlabeled data distributions. We used 887 3D US images, of which 87 had manually annotated labels and 800 images were unlabeled. Training/validation/testing sets of 25/12/50, 25/12/25 and 50/12/25 images were used for model experimentation. The Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and absolute volumetric difference (VD) were used as metrics for comparing to other benchmarks. The baseline benchmark was the fully supervised vanilla 3D U-Net while dual task consistency, shape-aware semi-supervised network, correlation-aware mutual learning, and 3D U-Net Ensemble models were used as state-of-the-art benchmarks with DSC, MAD, and VD as comparison metrics. The Wilcoxon signed-rank test was used to test statistical significance between algorithms for DSC and VD with the threshold being p < 0.05 and corrected to p < 0.01 using the Bonferroni correction. The random-access memory (RAM) trace and number of trainable parameters were used to compare the computing efficiency between models. RESULTS: Relative to the baseline 3D U-Net model, our shape-encoding SSL method reported a mean DSC improvement of 6.5%, 7.7%, and 4.1% with a 95% confidence interval of 4.2%, 5.7%, and 2.1% using image data splits of 25/12/50, 25/12/25, and 50/12/25, respectively. Our method only used a 1GB increase in RAM compared to the baseline 3D U-Net and required less than half the RAM and trainable parameters compared to the 3D U-Net ensemble method. CONCLUSIONS: Based on our extensive literature survey, this is one of the first reported works to propose an SSL method designed for segmenting organs in 3D US images and specifically one that incorporates unlabeled data for segmenting neonatal cerebral lateral ventricles. When compared to the state-of-the-art SSL and fully supervised learning methods, our method yielded the highest DSC and lowest VD while being computationally efficient.
背景:三维(3D)超声(US)成像技术在监测脑室出血新生儿侧脑室变化方面具有非侵入性监测的潜力。由于解剖边界定义不明确且信噪比低,完全监督的 3D US 图像侧脑室分割方法需要由经过训练的医生对大量标注图像进行注释,这既繁琐又耗时且昂贵。在小数据集上训练完全监督的分割方法可能会导致过拟合,从而降低其通用性。用于 3D US 分割的半监督学习(SSL)方法可能能够解决这些挑战,但大多数现有的 SSL 方法都是针对磁共振或计算机断层扫描(CT)图像开发的。
目的:开发一种快速、轻量级和准确的 SSL 方法,特别是针对 3D US 图像,该方法将使用未标记的数据来提高分割性能。
方法:我们提出了一种 SSL 框架,该框架利用自动编码器网络的形状编码能力,对 3D U-Net 分割模型施加复杂的形状和大小约束。自动编码器根据 3D U-Net 预测的分割结果创建伪标签,从而施加形状约束。然后,对抗性鉴别器网络确定图像是来自标记数据分布还是未标记数据分布。我们使用了 887 个 3D US 图像,其中 87 个具有手动标注标签,800 个图像未标记。使用 25/12/50、25/12/25 和 50/12/25 个图像的训练/验证/测试集进行模型实验。Dice 相似系数(DSC)、平均绝对表面距离(MAD)和绝对体积差(VD)被用作与其他基准进行比较的度量。基线基准是完全监督的香草 3D U-Net,而双任务一致性、形状感知半监督网络、相关感知相互学习和 3D U-Net 集成模型被用作具有 DSC、MAD 和 VD 作为比较指标的最先进基准。Wilcoxon 符号秩检验用于测试算法在 DSC 和 VD 方面的统计显著性,阈值为 p < 0.05,并使用 Bonferroni 校正将其校正为 p < 0.01。随机存取存储器(RAM)跟踪和可训练参数的数量用于比较模型之间的计算效率。
结果:与基线 3D U-Net 模型相比,我们的形状编码 SSL 方法在图像数据分割为 25/12/50、25/12/25 和 50/12/25 时,报告的平均 DSC 分别提高了 6.5%、7.7%和 4.1%,置信区间分别为 4.2%、5.7%和 2.1%。与基线 3D U-Net 相比,我们的方法仅增加了 1GB 的 RAM,与 3D U-Net 集成方法相比,所需的 RAM 和可训练参数不到其一半。
结论:根据我们广泛的文献调查,这是首次提出专门用于分割 3D US 图像中器官的 SSL 方法的报告之一,特别是专门用于使用未标记数据分割新生儿大脑侧脑室的方法。与最先进的 SSL 和完全监督学习方法相比,我们的方法在计算效率方面表现出最高的 DSC 和最低的 VD。
IEEE J Biomed Health Inform. 2022-2