Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT 06510, United States.
T. Rowe Price, Baltimore, MD 21202, United States.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2507-2518. doi: 10.1093/jamia/ocae234.
The COVID-19 pandemic emphasized the value of geospatial visual analytics for both epidemiologists and the general public. However, systems struggled to encode temporal and geospatial trends of multiple, potentially interacting variables, such as active cases, deaths, and vaccinations. We sought to ask (1) how epidemiologists interact with visual analytics tools, (2) how multiple, time-varying, geospatial variables can be conveyed in a unified view, and (3) how complex spatiotemporal encodings affect utility for both experts and non-experts.
We propose encoding variables with animated, concentric, hollow circles, allowing multiple variables via color encoding and avoiding occlusion problems, and we implement this method in a browser-based tool called CoronaViz. We conduct task-based evaluations with non-experts, as well as in-depth interviews and observational sessions with epidemiologists, covering a range of tools and encodings.
Sessions with epidemiologists confirmed the importance of multivariate, spatiotemporal queries and the utility of CoronaViz for answering them, while providing direction for future development. Non-experts tasked with performing spatiotemporal queries unanimously preferred animation to multi-view dashboards.
We find that conveying complex, multivariate data necessarily involves trade-offs. Yet, our studies suggest the importance of complementary visualization strategies, with our animated multivariate spatiotemporal encoding filling important needs for exploration and presentation.
CoronaViz's unique ability to convey multiple, time-varying, geospatial variables makes it both a valuable addition to interactive COVID-19 dashboards and a platform for empowering experts and the public during future disease outbreaks. CoronaViz is open-source and a live instance is freely hosted at http://coronaviz.umiacs.io.
新冠疫情凸显了地理空间可视化分析对于流行病学家和公众的价值。然而,系统在编码多个潜在相互作用变量(如活跃病例、死亡和疫苗接种)的时间和地理空间趋势方面存在困难。我们试图探讨:(1)流行病学家如何与可视化分析工具交互;(2)如何在统一视图中呈现多个时变的地理空间变量;(3)复杂时空编码如何影响专家和非专家的实用性。
我们提出使用动画的同心空心圆来编码变量,通过颜色编码实现多变量表示,并避免遮挡问题,我们在名为 CoronaViz 的基于浏览器的工具中实现了这种方法。我们对非专家进行了基于任务的评估,以及对流行病学家进行了深入的访谈和观察会议,涵盖了一系列的工具和编码方法。
与流行病学家的会议证实了多元时空查询的重要性,以及 CoronaViz 回答这些查询的实用性,同时为未来的发展提供了方向。被要求执行时空查询的非专家一致认为动画比多视图仪表板更受欢迎。
我们发现传达复杂的多元数据必然涉及权衡。然而,我们的研究表明互补可视化策略的重要性,我们的动画多元时空编码填补了探索和呈现方面的重要需求。
CoronaViz 独特的传达多个时变地理空间变量的能力使其成为交互式新冠疫情仪表板的有价值的补充,也是在未来疾病爆发期间为专家和公众提供赋权的平台。CoronaViz 是开源的,其实时实例可在 http://coronaviz.umiacs.io 免费访问。