Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, QLD, 4101, Australia.
School of The Environment, The University of Queensland, St Lucia, QLD, 4072, Australia.
Syst Parasitol. 2024 Aug 21;101(5):57. doi: 10.1007/s11230-024-10183-y.
In a parasitological survey of fishes from Moreton Bay (southeastern Queensland, Australia), 169 teleost fishes, representing 54 species from 28 families, were examined for larval cestodes. Of these 54 species, 36 were found to be infected by metacestodes. Metacestodes were characterised by morphological and molecular data (the D1-D3 region of the 28S rDNA gene); these data were analysed in parallel to inform larval type allocation. Metacestodes collected represented eight morphological types, seven previously reported (Types I, II, IV, V, VI, VII, and X) and one novel type (Type XVI). Phylogenetic analyses were conducted to genetically match larval types to adult cestodes. Six of the eight larval types found were matched to adult forms: Type I metacestodes matched species of Phoreiobothrium Linton, 1889 (Onchobothriidae); Type II metacestodes matched species of Acanthobothrium van Beneden, 1849 (Onchobothriidae); Type IV metacestodes matched species of Scyphophyllidium Woodland, 1927 and Alexandercestus Ruhnke & Workman, 2013 (Phyllobothriidae); Type VI metacestodes matched species of Anthobothrium van Beneden, 1850 (Tetraphyllidea incertae sedis); Type X metacestodes matched species of Ambitalveolus Caira & Jensen, 2022 (Tetraphyllidea incertae sedis); and Type XVI metacestodes matched species of Platybothrium Linton, 1890 (Onchobothriidae). Based on phylogenetic topology, Type V metacestodes are inferred to match Pedibothrium Linton, 1909 (Balanobothriidae) and Type VII metacestodes are inferred to match Spongiobothrium Linton, 1889 (Rhinebothriidae). These findings support and extend the unified morphological type system proposed previously, but suggest that morphological types will ultimately be informative to identify metacestodes to a group of related genera rather than any distinct genus.
在对澳大利亚昆士兰州东南部莫尔顿湾(Moreton Bay)鱼类进行的寄生虫学调查中,共检查了 169 种硬骨鱼,这些鱼代表了 28 个科的 54 种。在这 54 种鱼中,有 36 种被幼虫绦虫感染。幼虫绦虫通过形态学和分子数据(28S rDNA 基因的 D1-D3 区)进行了描述;这些数据平行分析,以告知幼虫类型分配。收集到的幼虫绦虫代表了八种形态类型,其中七种是以前报道过的(类型 I、II、IV、V、VI、VII 和 X),还有一种是新的类型(类型 XVI)。进行了系统发育分析,将幼虫类型与成虫绦虫进行基因匹配。发现的八种幼虫类型中有六种与成虫形式相匹配:I 型幼虫绦虫与 Phoreiobothrium Linton, 1889(Onchobothriidae)的物种相匹配;II 型幼虫绦虫与 Acanthobothrium van Beneden, 1849(Onchobothriidae)的物种相匹配;IV 型幼虫绦虫与 Scyphophyllidium Woodland, 1927 和 Alexandercestus Ruhnke & Workman, 2013(Phyllobothriidae)的物种相匹配;VI 型幼虫绦虫与 Anthobothrium van Beneden, 1850(Tetraphyllidea incertae sedis)的物种相匹配;X 型幼虫绦虫与 Ambitalveolus Caira & Jensen, 2022(Tetraphyllidea incertae sedis)的物种相匹配;而 XVI 型幼虫绦虫与 Platybothrium Linton, 1890(Onchobothriidae)的物种相匹配。基于系统发育拓扑结构,推断 V 型幼虫绦虫与 Pedibothrium Linton, 1909(Balanobothriidae)相匹配,而 VII 型幼虫绦虫与 Spongiobothrium Linton, 1889(Rhinebothriidae)相匹配。这些发现支持并扩展了以前提出的统一形态类型系统,但表明形态类型最终将有助于将幼虫绦虫鉴定为一组相关的属,而不是任何特定的属。