Department of Soil Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
School of Agriculture and Environment, UWA, The University of Western Australia, Perth, WA, 6009, Australia.
Environ Geochem Health. 2024 Aug 21;46(10):372. doi: 10.1007/s10653-024-02159-0.
Metal contamination in soil poses a significant environmental concern worldwide, necessitating effective remediation strategies such as phytoremediation. The present study investigated the effects of EDTA dosage (1.5 and 3 mmol kg) and two Trichoderma species (T. harzianum and T. aureoviride) on copper (Cu) content and growth of maize plants grown in a Cu-contaminated soil, as well as Cu fractionation in the soil. In the absence of EDTA, only inoculation with T. harzianum led to a significant increase in shoot biomass. Combining fungal inoculum with EDTA only yielded a significant increase in shoot biomass when using T. aureoviride at a low EDTA rate, highlighting the interplay between fungal species and EDTA rates on plant growth. Results also indicated that EDTA application increased Cu bioavailability, enhancing Cu dissolution and root (not shoot) Cu concentrations. Conversely, inoculation with both Trichoderma species reduced Cu mobility and bioavailability in soil, thereby decreasing the shoot Cu concentrations of plants. When combined with EDTA, only application of T. harzianum resulted in an enhanced shoot Cu concentration, whereas combined application of T. aureoviride and EDTA did not make a significant change compared to the corresponding control (no fungal inoculation, no EDTA), possibly due to a lower compatibility of the T. aureoviride isolate with EDTA. Our results demonstrated that EDTA application, in both non-inoculated and inoculated treatments, increased Cu availability by facilitating its redistribution and transformation from less plant-available fractions (residual, Fe/Mn oxide-bound, and carbonate-bound) to the more readily plant-available forms (water-soluble and exchangeable fractions). In conclusion, although individual Trichoderma application proved beneficial for phytostabilization by reducing Cu content and mitigating Cu toxicity in plants, the combined application of EDTA and a compatible Trichoderma isolate (here, the T. harzianum isolate) holds promise for enhancing the phytoextraction capacity of plants. Although using maize has the advantage of being a food crop, to optimize phytoextraction, plant species with superior metal tolerance and phytoextraction capabilities should be selected, exceeding those of maize.
土壤中的金属污染是一个全球性的环境问题,需要采用有效的修复策略,如植物修复。本研究调查了 EDTA 剂量(1.5 和 3 mmol kg)和两种木霉(哈茨木霉和绿木霉)对铜污染土壤中玉米生长的铜含量和生长的影响,以及土壤中铜的形态。在没有 EDTA 的情况下,只有接种哈茨木霉才能显著增加地上部生物量。只有在低 EDTA 率下用绿木霉接种真菌菌剂才能显著增加地上部生物量,这突出了真菌种类和 EDTA 率对植物生长的相互作用。结果还表明,EDTA 的应用增加了铜的生物有效性,促进了铜的溶解和根(而不是地上部)的铜浓度。相反,两种木霉的接种均降低了土壤中铜的迁移性和生物有效性,从而降低了植物地上部的铜浓度。与 EDTA 结合使用时,只有哈茨木霉的应用导致地上部铜浓度增加,而绿木霉和 EDTA 的联合应用与相应的对照(无真菌接种,无 EDTA)相比并没有显著变化,可能是由于绿木霉分离株与 EDTA 的相容性较低。我们的研究结果表明,EDTA 的应用(在未接种和接种处理中)通过促进其从植物利用性较低的(残留、Fe/Mn 氧化物结合和碳酸盐结合)向更易被植物利用的形式(水溶性和可交换性)的重新分配和转化,增加了铜的有效性。总之,虽然单独应用木霉通过降低植物中的铜含量和减轻铜毒性对植物稳定化有益,但 EDTA 和相容木霉分离株(此处为哈茨木霉分离株)的联合应用有望提高植物的植物提取能力。虽然使用玉米作为优势是一种粮食作物,但为了优化植物提取,应选择具有优异金属耐受性和植物提取能力的植物物种,超过玉米的能力。