McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Cell Rep. 2024 Aug 27;43(8):114638. doi: 10.1016/j.celrep.2024.114638. Epub 2024 Aug 19.
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
生物和人工神经网络通过修改突触权重来学习,但目前尚不清楚这些系统如何既能保留先前的知识,又能获取新的信息。在这里,我们表明,皮层锥体神经元可以通过在不同的树突隔室中差异调节突触可塑性来解决这种可塑性与稳定性的困境。成年小鼠 5 层皮层锥体神经元的斜向树突选择性地接收单突触丘脑输入,线性整合,并且缺乏爆发计时突触增强。相比之下,不接收丘脑输入的基底树突表现出传统的 NMDA 受体(NMDAR)介导的超线性整合和突触增强。一致地,棘突突触在斜支上的结构可塑性降低。斜向树突上突触的 NMDAR 活性和表达的选择性下降是由视觉经验的关键期控制的。我们的研究结果表明了一种生物学机制,即单个神经元如何通过改变不同树突区域的突触特性来保护一组输入免受持续的可塑性影响。