Suppr超能文献

生理钙水平下的突触可塑性规则。

Synaptic plasticity rules with physiological calcium levels.

机构信息

Unité de Neurobiologie des canaux Ionique et de la Synapse, UMR1072, INSERM, Aix-Marseille Université, 13015 Marseille, France.

Department of Neurobiology, University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33639-33648. doi: 10.1073/pnas.2013663117. Epub 2020 Dec 16.

Abstract

Spike-timing-dependent plasticity (STDP) is considered as a primary mechanism underlying formation of new memories during learning. Despite the growing interest in activity-dependent plasticity, it is still unclear whether synaptic plasticity rules inferred from in vitro experiments are correct in physiological conditions. The abnormally high calcium concentration used in in vitro studies of STDP suggests that in vivo plasticity rules may differ significantly from in vitro experiments, especially since STDP depends strongly on calcium for induction. We therefore studied here the influence of extracellular calcium on synaptic plasticity. Using a combination of experimental (patch-clamp recording and Ca imaging at CA3-CA1 synapses) and theoretical approaches, we show here that the classic STDP rule in which pairs of single pre- and postsynaptic action potentials induce synaptic modifications is not valid in the physiological Ca range. Rather, we found that these pairs of single stimuli are unable to induce any synaptic modification in 1.3 and 1.5 mM calcium and lead to depression in 1.8 mM. Plasticity can only be recovered when bursts of postsynaptic spikes are used, or when neurons fire at sufficiently high frequency. In conclusion, the STDP rule is profoundly altered in physiological Ca, but specific activity regimes restore a classical STDP profile.

摘要

突触传递效能的改变(STDP)被认为是学习过程中形成新记忆的主要机制。尽管活性依赖的可塑性越来越受到关注,但在生理条件下,从体外实验推断出的突触可塑性规则是否正确仍不清楚。STDP 体外研究中使用的异常高钙浓度表明,体内的可塑性规则可能与体外实验有很大的不同,特别是因为 STDP 的诱导强烈依赖于钙。因此,我们在这里研究了细胞外钙对突触可塑性的影响。我们使用实验(在 CA3-CA1 突触的膜片钳记录和钙成像)和理论方法的组合,表明在生理钙范围内,经典的 STDP 规则(即一对单个的前突触和后突触动作电位诱导突触修饰)是无效的。相反,我们发现这些一对单个刺激在 1.3 和 1.5mM 钙中不能诱导任何突触修饰,而在 1.8mM 钙中导致抑制。只有当使用后突触脉冲爆发或神经元以足够高的频率发射时,才能恢复可塑性。总之,STDP 规则在生理钙中发生了深刻的改变,但特定的活动模式恢复了经典的 STDP 模式。

相似文献

1
Synaptic plasticity rules with physiological calcium levels.生理钙水平下的突触可塑性规则。
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33639-33648. doi: 10.1073/pnas.2013663117. Epub 2020 Dec 16.
4
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.小脑输入阶段的赫布型峰电位时间依赖性可塑性。
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
8
Interplay of multiple pathways and activity-dependent rules in STDP.在 STDP 中多个途径和活动依赖性规则的相互作用。
PLoS Comput Biol. 2018 Aug 14;14(8):e1006184. doi: 10.1371/journal.pcbi.1006184. eCollection 2018 Aug.
10
Heterosynaptic plasticity prevents runaway synaptic dynamics.异突触可塑性可防止突触动力学失控。
J Neurosci. 2013 Oct 2;33(40):15915-29. doi: 10.1523/JNEUROSCI.5088-12.2013.

引用本文的文献

本文引用的文献

3
Cerebellar learning using perturbations.小脑使用微扰进行学习。
Elife. 2018 Nov 12;7:e31599. doi: 10.7554/eLife.31599.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验