Hu Xinrong, Yang Chen, Fang Fei, Huang Jin, Li Ping, Sheng Bin, Lee Tong-Yee
IEEE Trans Vis Comput Graph. 2024 Aug 21;PP. doi: 10.1109/TVCG.2024.3447351.
Convolutional neural networks (CNNs) are widely used for embroidery feature synthesis from images. However, they are still unable to predict diverse stitch types, which makes it difficult for the CNNs to effectively extract stitch features. In this paper, we propose a multi-stitch embroidery generative adversarial network (MSEmbGAN) that uses a region-aware texture generation sub-network to predict diverse embroidery features from images. To the best of our knowledge, our work is the first CNN-based generative adversarial network to succeed in this task. Our region-aware texture generation sub-network detects multiple regions in the input image using a stitchclassifierandgeneratesastitchtextureforeachregionbasedonitsshapefeatures.Wealsoproposeacolorizationnetworkwitha color feature extractor, which helps achieve full image color consistency by requiring the color attributes of the output to closely resemble the input image. Because of the current lack of labeled embroidery image datasets, we provide a new multi-stitch embroidery dataset that is annotated with three single-stitch types and one multi-stitch type. Our dataset, which includes more than 30K high-quality multistitch embroidery images, more than 13K aligned content-embroidered images, and more than 17K unaligned images, is currently the largest embroidery dataset accessible, as far as we know. Quantitative and qualitative experimental results, including a qualitative user study, show that our MSEmbGAN outperforms current state-of-the-artembroiderysynthesisandstyle-transfermethodsonallevaluation indicators. Our demo and dataset sample can be found on the website https://csai.wtu.edu.cn/TVCG01/index.html.
卷积神经网络(CNN)被广泛用于从图像中合成刺绣特征。然而,它们仍然无法预测多种针迹类型,这使得CNN难以有效地提取针迹特征。在本文中,我们提出了一种多针迹刺绣生成对抗网络(MSEmbGAN),该网络使用区域感知纹理生成子网络从图像中预测多种刺绣特征。据我们所知,我们的工作是首个基于CNN的生成对抗网络在这项任务中取得成功。我们的区域感知纹理生成子网络使用针迹分类器检测输入图像中的多个区域,并根据每个区域的形状特征生成针迹纹理。我们还提出了一种带有颜色特征提取器的着色网络,通过要求输出的颜色属性与输入图像非常相似来帮助实现全图像颜色一致性。由于目前缺乏带标签的刺绣图像数据集,我们提供了一个新的多针迹刺绣数据集,该数据集标注了三种单针迹类型和一种多针迹类型。据我们所知,我们的数据集包括超过30K高质量的多针迹刺绣图像、超过13K对齐的内容刺绣图像和超过17K未对齐的图像,是目前可获取的最大的刺绣数据集。定量和定性实验结果,包括定性用户研究,表明我们的MSEmbGAN在所有评估指标上均优于当前最先进的刺绣合成和风格迁移方法。我们的演示和数据集样本可在网站https://csai.wtu.edu.cn/TVCG01/index.html上找到。