Wang Ying, Ma Maoyuan, Xie Yanxin, Peng Qinke, Lyu Hongqiang, Sun Hequan, Fu Laiyi
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2133-2144. doi: 10.1109/TCBB.2024.3447110. Epub 2024 Dec 10.
CircRNA is closely related to human disease, so it is important to predict circRNA-disease association (CDA). However, the traditional biological detection methods have high difficulty and low accuracy, and computational methods represented by deep learning ignore the ability of the model to explicitly extract local depth information of the CDA. We propose a model based on knowledge graph from recursion and attention aggregation for circRNA-disease association prediction (KGRACDA). This model combines explicit structural features and implicit embedding information of graphs, optimizing graph embedding vectors. First, we built large-scale, multi-source heterogeneous datasets and construct a knowledge graph of multiple RNAs and diseases. After that, we use a recursive method to build multi-hop subgraphs and optimize graph attention mechanism by gating mechanism, mining local depth information. At the same time, the model uses multi-head attention mechanism to balance global and local depth features of graphs, and generate CDA prediction scores. KGRACDA surpasses other methods by capturing local and global depth information related to CDA. We update an interactive web platform HNRBase v2.0, which visualizes circRNA data, and allows users to download data and predict CDA using model.
环状RNA(circRNA)与人类疾病密切相关,因此预测环状RNA-疾病关联(CDA)很重要。然而,传统的生物学检测方法难度大、准确率低,而以深度学习为代表的计算方法忽略了模型明确提取CDA局部深度信息的能力。我们提出了一种基于递归和注意力聚合的知识图谱模型用于环状RNA-疾病关联预测(KGRACDA)。该模型结合了图的显式结构特征和隐式嵌入信息,优化图嵌入向量。首先,我们构建了大规模、多源异构数据集,并构建了多个RNA和疾病的知识图谱。之后,我们使用递归方法构建多跳子图,并通过门控机制优化图注意力机制,挖掘局部深度信息。同时,该模型使用多头注意力机制平衡图的全局和局部深度特征,并生成CDA预测分数。KGRACDA通过捕获与CDA相关的局部和全局深度信息超越了其他方法。我们更新了一个交互式网络平台HNRBase v2.0,它可以可视化circRNA数据,并允许用户下载数据并使用模型预测CDA。