Suppr超能文献

自适应固定时间 TSM 用于未知扰动下的不确定非线性动力系统。

Adaptive fixed-time TSM for uncertain nonlinear dynamical system under unknown disturbance.

机构信息

College of Computer and Information Sciences Prince Sultan University Riyadh, Riyadh, Saudi Arabia.

Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2024 Aug 21;19(8):e0304448. doi: 10.1371/journal.pone.0304448. eCollection 2024.

Abstract

For nonlinear systems subjected to external disturbances, an adaptive terminal sliding mode control (TSM) approach with fixed-time convergence is presented in this paper. The introduction of the fixed-time TSM with the sliding surface and the new Lemma of fixed-time stability are the main topics of discussion. The suggested approach demonstrates quick convergence, smooth and non-singular control input, and stability within a fixed time. Existing fixed-time TSM schemes are often impacted by unknown dynamics such as uncertainty and disturbances. Therefore, the proposed strategy is developed by combining the fixed-time TSM with an adaptive scheme. This adaptive method deals with an uncertain dynamic system when there are external disturbances. The stability of a closed-loop structure in a fixed-time will be shown by the findings of the Lyapunov analysis. Finally, the outcomes of the simulations are shown to evaluate and demonstrate the efficacy of the suggested method. As a result, examples with different cases are provided for a better comparison of suggested and existing control strategies.

摘要

针对受外部干扰的非线性系统,本文提出了一种具有固定时间收敛的自适应终端滑模控制(TSM)方法。讨论的主要内容包括引入具有滑动面的固定时间 TSM 和新的固定时间稳定性引理。所提出的方法具有快速收敛、平滑非奇异控制输入以及在固定时间内的稳定性等特点。现有的固定时间 TSM 方案通常受到不确定性和干扰等未知动态的影响。因此,通过将固定时间 TSM 与自适应方案相结合,提出了这种策略。当存在外部干扰时,这种自适应方法可以处理不确定的动态系统。通过 Lyapunov 分析可以证明闭环结构在固定时间内的稳定性。最后,通过仿真结果来评估和验证所提出方法的有效性。因此,提供了不同情况下的示例,以便更好地比较所提出的方法和现有的控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/946c/11338469/bf0b4b2d82c1/pone.0304448.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验