Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Photonics Center, Boston University, Boston, MA 02215, USA.
Sci Adv. 2024 Aug 23;10(34):eadq0294. doi: 10.1126/sciadv.adq0294. Epub 2024 Aug 21.
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
实时追踪细胞内碳水化合物仍然具有挑战性。虽然点击化学允许用荧光探针进行生物正交标记,但该反应会永久性地改变靶分子,并且只能进行单次快照。在这里,我们展示了在活细胞中对叠氮标记的碳水化合物进行无点击中红外光热(MIP)成像。利用 6-叠氮海藻糖(TreAz)的微摩尔检测灵敏度和 MIP 成像的 300nm 空间分辨率,直接可视化了单个分枝杆菌中的海藻糖循环途径,从细胞质摄取到膜定位。MIP 光谱中叠氮化物的峰值位移进一步揭示了 TreAz 与细胞内蛋白质之间的相互作用。点击反应后未反应叠氮化物的 MIP 图谱揭示了细菌内点击化学的异质性。叠氮光热探针更广泛的应用可用于可视化酵母中 Leloir 途径的初始步骤以及哺乳动物细胞中合成的新聚糖。