Fu Tong, Lin Jiaxin, Xu Yuhao, Jia Junji, Wang Yonglong, Zhang Shunping, Xu Hongxing
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
School of Physics and Electronic Engineering, Linyi University, Linyi 276005, People's Republic of China.
Nano Lett. 2024 Sep 4;24(35):10783-10789. doi: 10.1021/acs.nanolett.4c01931. Epub 2024 Aug 21.
Light carries both longitudinal and transverse spin angular momentum. The spin can couple with its orbital counterpart, known as the spin-orbit interaction (SOI) of light. Complementary to the longitudinal SOI known previously, here we show that transverse SOI of light is inherent in the Helmholtz equation when transverse spinning light propagates in curved paths. It lifts the degeneracy of dispersion relations of light for opposite transverse spin states, analogous to the Dresselhaus effect. Transverse SOI is ubiquitous in nanophotonic systems where transverse spin and optical path bending are inevitable. It can explain anomalous effects like the dispersion relation of surface plasmon polaritons on curved paths and the energy level of whispering gallery modes. Our results reveal the analogies of spin photonics and spintronics and offer a new degree of freedom for integrated photonics, spin photonics, and astrophysics.
光携带纵向和横向自旋角动量。自旋可以与其轨道对应物耦合,即光的自旋 - 轨道相互作用(SOI)。与先前已知的纵向SOI互补,我们在此表明,当横向自旋光在弯曲路径中传播时,光的横向SOI是亥姆霍兹方程所固有的。它消除了相反横向自旋态的光色散关系的简并性,类似于 Dresselhaus 效应。横向SOI在纳米光子系统中无处不在,在这些系统中横向自旋和光路弯曲是不可避免的。它可以解释诸如弯曲路径上表面等离激元极化激元的色散关系以及回音壁模式的能级等异常效应。我们的结果揭示了自旋光子学和自旋电子学的相似之处,并为集成光子学、自旋光子学和天体物理学提供了一个新的自由度。