Suppr超能文献

健康与疾病中的因果推断:孟德尔随机化原理与应用述评。

Causal inference in health and disease: a review of the principles and applications of Mendelian randomization.

机构信息

Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom.

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, United Kingdom.

出版信息

J Bone Miner Res. 2024 Oct 29;39(11):1539-1552. doi: 10.1093/jbmr/zjae136.

Abstract

Mendelian randomization (MR) is a genetic epidemiological technique that uses genetic variation to infer causal relationships between modifiable exposures and outcome variables. Conventional observational epidemiological studies are subject to bias from a range of sources; MR analyses can offer an advantage in that they are less prone to bias as they use genetic variants inherited at conception as "instrumental variables", which are proxies of an exposure. However, as with all research tools, MR studies must be carefully designed to yield valuable insights into causal relationships between exposures and outcomes, and to avoid biased or misleading results that undermine the validity of the causal inferences drawn from the study. In this review, we outline Mendel's laws of inheritance, the assumptions and principles that underlie MR, MR study designs and methods, and how MR analyses can be applied and reported. Using the example of serum phosphate concentrations on liability to kidney stone disease we illustrate how MR estimates may be visualized and, finally, we contextualize MR in bone and mineral research including exemplifying how this technique could be employed to inform clinical studies and future guidelines concerning BMD and fracture risk. This review provides a framework to enhance understanding of how MR may be used to triangulate evidence and progress research in bone and mineral metabolism as we strive to infer causal effects in health and disease.

摘要

孟德尔随机化(MR)是一种遗传流行病学技术,它利用遗传变异来推断可改变的暴露因素与结果变量之间的因果关系。传统的观察性流行病学研究容易受到多种来源的偏倚影响;MR 分析具有优势,因为它们使用在受孕时遗传的遗传变异作为“工具变量”,这些变量是暴露的替代指标,因此不太容易受到偏倚的影响。然而,与所有研究工具一样,MR 研究必须精心设计,才能对暴露因素与结果之间的因果关系产生有价值的见解,并避免产生有偏差或误导性的结果,从而破坏从研究中得出的因果推断的有效性。在这篇综述中,我们概述了孟德尔遗传定律、MR 所依据的假设和原则、MR 研究设计和方法,以及如何应用和报告 MR 分析。我们使用血清磷酸盐浓度与肾结石易感性的例子来说明如何可视化 MR 估计值,最后,我们将 MR 置于骨骼和矿物质研究的背景下,包括举例说明如何利用该技术为 BMD 和骨折风险的临床研究和未来指南提供信息。本综述提供了一个框架,以增强对如何利用 MR 来三角测量证据并推进骨骼和矿物质代谢研究的理解,因为我们努力推断健康和疾病中的因果效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee34/11523132/25e6295f1bda/zjae136f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验