文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对棕榈酰化介导的脑网络重塑和胶质母细胞瘤风险的多组学见解。

Multi-omics insights into Palmitoylation-mediated brain network remodeling and glioblastoma risk.

作者信息

Tan Shasha, You Jinliang, Wang Huijun, Zhao Long, Li Shun, Tang Xiaoping, Liu Hongjun

机构信息

Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.

Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich- Heine-Universität, 40225, Düsseldorf, Germany.

出版信息

Discov Oncol. 2025 Aug 8;16(1):1507. doi: 10.1007/s12672-025-03369-3.


DOI:10.1007/s12672-025-03369-3
PMID:40779097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12334383/
Abstract

UNLABELLED: Glioblastoma (GBM) remains a lethal brain tumor with limited therapeutic progress, necessitating novel insights into its molecular drivers. This study investigates the causal role of protein palmitoylation-a post-translational modification regulating tumor metabolism and microenvironment-in GBM pathogenesis through neuroimaging-mediated pathways. Leveraging two-sample Mendelian randomization (MR) and multi-omics data from FinnGen (406 GBM cases/378,749 controls) and UK Biobank (3,935 brain imaging phenotypes), we identified protective effects of palmitoylation-related genes (ZDHHC3: OR = 0.17, 95%CI = 0.0602–0.4824; ZDHHC6: OR = 0.41, 0.2330–0.7267; ZDHHC13: OR = 0.64, 0.4745–0.8618; PPT2: OR = 0.59, 0.3568–0.9843) against GBM risk. Neuroimaging mediation analysis revealed that 15–23% of this protection operates through structural and functional brain remodeling, including reduced parahippocampal volume (mediated 15.96% for ZDHHC13), diminished default mode network connectivity ICA100 edge 295, and ICVF Body of corpus callosum(15.29% mediation for ZDHHC6). Bidirectional regulation was observed in motor pathways, where palmitoylation genes simultaneously suppressed corticospinal tract integrity (FA) and enhanced cortical plasticity. Sensitivity analyses confirmed robustness (Cochran’s Q  > 0.05; MR-PRESSO global test  > 0.05), with Steiger filtering excluding reverse causation. Our findings suggest that palmitoylation may play a key modulatory role in GBM risk through influencing brain network dynamics, highlighting neuroimaging features (e.g., DMN connectivity, parahippocampal atrophy) as potentially informative for GBM risk and warranting further investigation for their role in early detection. These results also raise the possibility of palmitoylation-targeted therapies aimed at disrupting tumor-microenvironment crosstalk, suggesting a direction for future therapeutic exploration. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12672-025-03369-3.

摘要

未标记:胶质母细胞瘤(GBM)仍然是一种致命的脑肿瘤,治疗进展有限,因此需要对其分子驱动因素有新的见解。本研究通过神经影像介导的途径,研究蛋白质棕榈酰化(一种调节肿瘤代谢和微环境的翻译后修饰)在GBM发病机制中的因果作用。利用来自芬兰基因库(406例GBM病例/378,749名对照)和英国生物银行(3,935种脑成像表型)的两样本孟德尔随机化(MR)和多组学数据,我们确定了棕榈酰化相关基因(ZDHHC3:OR = 0.17,95%CI = 0.0602–0.4824;ZDHHC6:OR = 0.41,0.2330–0.7267;ZDHHC13:OR = 0.64,0.4745–0.8618;PPT2:OR = 0.59,0.3568–0.9843)对GBM风险的保护作用。神经影像中介分析显示,这种保护作用的15%至23%是通过大脑结构和功能重塑实现的,包括海马旁回体积减小(ZDHHC13介导15.96%)、默认模式网络连通性ICA100边缘295降低以及胼胝体ICVF降低(ZDHHC6介导15.29%)。在运动通路中观察到双向调节,其中棕榈酰化基因同时抑制皮质脊髓束完整性(FA)并增强皮质可塑性。敏感性分析证实了稳健性( Cochr an's Q > 0.05;MR - PRESSO全局检验> 0.05),Steiger滤波排除了反向因果关系。我们的研究结果表明,棕榈酰化可能通过影响脑网络动力学在GBM风险中发挥关键调节作用,突出了神经影像特征(如DMN连通性、海马旁回萎缩)对GBM风险可能具有信息价值,并值得进一步研究它们在早期检测中的作用。这些结果还提出了以棕榈酰化为靶点的疗法的可能性,旨在破坏肿瘤 - 微环境的相互作用,为未来的治疗探索指明了方向。 补充信息:在线版本包含可在10.1007/s12672 - 025 - 03369 - 3获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d6/12334383/2f8c0c057952/12672_2025_3369_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d6/12334383/74038baac84b/12672_2025_3369_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d6/12334383/2f8c0c057952/12672_2025_3369_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d6/12334383/74038baac84b/12672_2025_3369_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d6/12334383/2f8c0c057952/12672_2025_3369_Fig2_HTML.jpg

相似文献

[1]
Multi-omics insights into Palmitoylation-mediated brain network remodeling and glioblastoma risk.

Discov Oncol. 2025-8-8

[2]
Metabolic remodeling in glioblastoma: a longitudinal multi-omics study.

Acta Neuropathol Commun. 2024-10-12

[3]
Palmitoylation Dynamics in Systemic Lupus Erythematosus: Multi-Omics Insights and Potential Therapeutic Implications.

Int J Rheum Dis. 2025-7

[4]
Palmitoylation-driven immune dysregulation and prognostic signature in low-grade glioma: a multi-omics and functional validation study.

Front Pharmacol. 2025-6-4

[5]
MOLUNGN: a multi-omics graph neural network for biomarker discovery and accurate lung cancer classification.

Front Genet. 2025-6-4

[6]
BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool.

ArXiv. 2025-7-27

[7]
Comparative analysis of statistical and deep learning-based multi-omics integration for breast cancer subtype classification.

J Transl Med. 2025-7-1

[8]
Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.

Health Inf Sci Syst. 2024-2-23

[9]
Oct4A palmitoylation modulates tumorigenicity and stemness in human glioblastoma cells.

Neuro Oncol. 2023-1-5

[10]
The Three Pillars of Glioblastoma: A Systematic Review and Novel Analysis of Multi-Omics and Clinical Data.

Cells. 2024-10-23

本文引用的文献

[1]
Integrated UPLC-ESI-MS/MS, network pharmacology, and transcriptomics to reveal the material basis and mechanism of Schisandra chinensis Fruit Mixture against diabetic nephropathy.

Front Immunol. 2025-2-19

[2]
Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies.

Mol Cancer. 2025-2-26

[3]
Advances in Palmitoylation: A key Regulator of liver cancer development and therapeutic targets.

Biochem Pharmacol. 2025-4

[4]
Introduction to Mendelian randomization.

Ann Clin Epidemiol. 2025-1-1

[5]
Causal inference in health and disease: a review of the principles and applications of Mendelian randomization.

J Bone Miner Res. 2024-10-29

[6]
Dissecting causal relationships between gut microbiota, blood metabolites, and glioblastoma multiforme: a two-sample Mendelian randomization study.

Front Microbiol. 2024-7-3

[7]
Deciphering the causal relationship between plasma and cerebrospinal fluid metabolites and glioblastoma multiforme: a Mendelian Randomization study.

Aging (Albany NY). 2024-5-10

[8]
DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma.

Epigenetics. 2024-12

[9]
Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment.

Front Immunol. 2024

[10]
Glioblastoma patients' survival and its relevant risk factors during the pre-COVID-19 and post-COVID-19 pandemic: real-world cohort study in the USA and China.

Int J Surg. 2024-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索