Suppr超能文献

施加外部声场抑制钠硫电池中的穿梭效应和枝晶生长

Inhibiting Shuttle Effect and Dendrite Growth in Sodium-Sulfur Batteries Enabled by Applying External Acoustic Field.

作者信息

Zhang Qipeng, Bo Luyu, Li Hao, Shen Liang, Li Jiali, Li Teng, Xiao Yunhao, Tian Zhenhua, Li Zheng

机构信息

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.

出版信息

Nano Lett. 2024 Sep 4;24(35):10711-10717. doi: 10.1021/acs.nanolett.4c00864. Epub 2024 Aug 21.

Abstract

The room-temperature sodium-sulfur (RT Na-S) battery is a promising alternative to traditional lithium-ion batteries owing to its abundant material availability and high specific energy density. However, the sodium polysulfide shuttle effect and dendritic growth pose significant challenges to their practical applications. In this study, we apply diverse disciplinary backgrounds to introduce a novel method to stimulate polarized BaTiO (BTO) nanoparticles on the separator. This approach generates more charges due to the piezoelectric effect under stronger driving forces produced by applying a controllable acoustic field at the outer edge of the cell. The acoustically stimulated BTO attracts more polysulfides, thus reducing the shuttling effect from the cathode to the anode and ultimately enhancing the battery performance. Meanwhile, the acoustic waves create additional streaming flows, improving the uniformity of the sodium ion dispersion, enhancing the sodium ion transport and reducing the possibility of sodium dendrite development. We believe that this work offers a new strategy for the development of high-performance Na-S batteries.

摘要

室温钠硫(RT Na-S)电池因其丰富的材料来源和高比能量密度,是传统锂离子电池的一个有前景的替代品。然而,多硫化钠穿梭效应和枝晶生长对其实际应用构成了重大挑战。在本研究中,我们运用不同学科背景,引入一种在隔膜上刺激极化钛酸钡(BTO)纳米颗粒的新方法。这种方法在电池外边缘施加可控声场产生的更强驱动力作用下,由于压电效应会产生更多电荷。经声刺激的BTO吸引更多多硫化物,从而减少从阴极到阳极的穿梭效应,最终提升电池性能。同时,声波产生额外的流动,改善钠离子分散的均匀性,增强钠离子传输并降低钠枝晶形成的可能性。我们相信这项工作为高性能钠硫电池的开发提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5ab/11378336/cda8dc757261/nl4c00864_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验