Suppr超能文献

将生物技术和信息技术整合以增强植物的自发荧光。

Integration of biological and information technologies to enhance plant autoluminescence.

机构信息

College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.

出版信息

Plant Cell. 2024 Nov 2;36(11):4703-4715. doi: 10.1093/plcell/koae236.

Abstract

Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.

摘要

已经对自体发光植物进行了基因改造,以表达真菌生物发光途径(FBP)。然而,前体生产的瓶颈限制了这些发光植物的亮度。在这里,我们通过人工 microRNA 阵列证明了利用计算模型来指导多重五基因沉默策略的有效性,以提高植物中的咖啡酸(CA)和卷曲霉素水平。通过结合功能丧失导向的代谢通量和酪氨酸衍生的 CA 途径,我们实现了生物发光水平的显著提高。我们成功地生成了 eFBP2 植物,通过整合所有经过验证的 DNA 模块,这些植物能够发出肉眼可读的更亮的生物发光。我们的分析表明,eFBP2 植物的发光能量转换效率目前非常低,这表明在未来的迭代中可以提高发光强度。这些发现强调了通过整合生物技术和信息技术来提高植物发光的潜力。

相似文献

3
[Research progress in the fungal bioluminescence pathway].[真菌生物发光途径的研究进展]
Sheng Wu Gong Cheng Xue Bao. 2025 Jul 25;41(7):2545-2558. doi: 10.13345/j.cjb.250138.

本文引用的文献

6
Multiplex CRISPR editing of wood for sustainable fiber production.高通量 CRISPR 编辑木材以实现可持续纤维生产。
Science. 2023 Jul 14;381(6654):216-221. doi: 10.1126/science.add4514. Epub 2023 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验