School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang, Jiangxi, PR China.
School of Information Engineering, Nanchang Institute of Technology, No. 289 Tianxiang Road, Nanchang, Jiangxi, PR China.
Comput Biol Med. 2024 Oct;181:109040. doi: 10.1016/j.compbiomed.2024.109040. Epub 2024 Aug 20.
The integration of multi-omics data offers a robust approach to understanding the complexity of diseases by combining information from various biological levels, such as genomics, transcriptomics, proteomics, and metabolomics. This integrated approach is essential for a comprehensive understanding of disease mechanisms and for developing more effective diagnostic and therapeutic strategies. Nevertheless, most current methodologies fail to effectively extract both shared and specific representations from omics data. This study introduces MOSDNET, a multi-omics classification framework that effectively extracts shared and specific representations. This framework leverages Simplified Multi-view Deep Discriminant Representation Learning (S-MDDR) and Dynamic Edge GCN (DEGCN) to enhance the accuracy and efficiency of disease classification. Initially, MOSDNET utilizes S-MDDR to establish similarity and orthogonal constraints for extracting these representations, which are then concatenated to integrate the multi-omics data. Subsequently, MOSDNET constructs a comprehensive view of the sample data by employing patient similarity networks. By incorporating similarity networks into DEGCN, MOSDNET learns intricate network structures and node representations, which enables superior classification outcomes. MOSDNET is trained through a multitask learning approach, effectively leveraging the complementary knowledge from both the data integration and classification components. After conducting extensive comparative experiments, we have conclusively demonstrated that MOSDNET outperforms leading state-of-the-art multi-omics classification models in terms of classification accuracy. Simultaneously, we employ MOSDNET to identify pivotal biomarkers within the multi-omics data, providing insights into disease etiology and progression.
多组学数据的整合提供了一种强大的方法,可以通过结合来自不同生物学层面的信息,如基因组学、转录组学、蛋白质组学和代谢组学,来理解疾病的复杂性。这种综合方法对于全面了解疾病机制和开发更有效的诊断和治疗策略至关重要。然而,大多数当前的方法未能有效地从组学数据中提取共享和特定的表示。本研究介绍了 MOSDNET,这是一种多组学分类框架,可以有效地提取共享和特定的表示。该框架利用简化的多视图深度判别表示学习(S-MDDR)和动态边缘图卷积网络(DEGCN)来提高疾病分类的准确性和效率。最初,MOSDNET 利用 S-MDDR 为提取这些表示建立相似性和正交约束,然后将它们连接起来,将多组学数据整合在一起。随后,MOSDNET 通过使用患者相似性网络构建样本数据的综合视图。通过将相似性网络纳入 DEGCN,MOSDNET 学习复杂的网络结构和节点表示,从而实现更好的分类结果。MOSDNET 通过多任务学习方法进行训练,有效地利用了数据集成和分类组件的互补知识。经过广泛的对比实验,我们已经明确证明 MOSDNET 在分类准确性方面优于领先的多组学分类模型。同时,我们还利用 MOSDNET 来识别多组学数据中的关键生物标志物,深入了解疾病的病因和进展。