文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TEMINET:用于诊断预测的共信息且可信的多组学整合网络。

TEMINET: A Co-Informative and Trustworthy Multi-Omics Integration Network for Diagnostic Prediction.

作者信息

Luo Haoran, Liang Hong, Liu Hongwei, Fan Zhoujie, Wei Yanhui, Yao Xiaohui, Cong Shan

机构信息

Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China.

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

Int J Mol Sci. 2024 Jan 29;25(3):1655. doi: 10.3390/ijms25031655.


DOI:10.3390/ijms25031655
PMID:38338932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10855161/
Abstract

Advancing the domain of biomedical investigation, integrated multi-omics data have shown exceptional performance in elucidating complex human diseases. However, as the variety of omics information expands, precisely perceiving the informativeness of intra- and inter-omics becomes challenging due to the intricate interrelations, thus presenting significant challenges in the integration of multi-omics data. To address this, we introduce a novel multi-omics integration approach, referred to as TEMINET. This approach enhances diagnostic prediction by leveraging an intra-omics co-informative representation module and a trustworthy learning strategy used to address inter-omics fusion. Considering the multifactorial nature of complex diseases, TEMINET utilizes intra-omics features to construct disease-specific networks; then, it applies graph attention networks and a multi-level framework to capture more collective informativeness than pairwise relations. To perceive the contribution of co-informative representations within intra-omics, we designed a trustworthy learning strategy to identify the reliability of each omics in integration. To integrate inter-omics information, a combined-beliefs fusion approach is deployed to harmonize the trustworthy representations of different omics types effectively. Our experiments across four different diseases using mRNA, methylation, and miRNA data demonstrate that TEMINET achieves advanced performance and robustness in classification tasks.

摘要

在推进生物医学研究领域方面,整合的多组学数据在阐明复杂人类疾病方面展现出卓越性能。然而,随着组学信息种类的扩展,由于复杂的相互关系,精确理解组学内部和组学间的信息性变得具有挑战性,从而在多组学数据整合中带来了重大挑战。为解决这一问题,我们引入了一种新颖的多组学整合方法,称为TEMINET。该方法通过利用组学内部共信息表示模块和用于解决组学间融合的可信学习策略来增强诊断预测。考虑到复杂疾病的多因素性质,TEMINET利用组学内部特征构建疾病特异性网络;然后,它应用图注意力网络和多层次框架来捕获比成对关系更多的集体信息性。为了理解组学内部共信息表示的贡献,我们设计了一种可信学习策略来识别整合中每个组学的可靠性。为了整合组学间信息,采用了联合信念融合方法来有效协调不同组学类型的可信表示。我们使用mRNA、甲基化和miRNA数据对四种不同疾病进行的实验表明,TEMINET在分类任务中实现了先进的性能和稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/e59ab4a480a6/ijms-25-01655-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/4aa9a08cc07b/ijms-25-01655-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/c1fae6d104f0/ijms-25-01655-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/e59ab4a480a6/ijms-25-01655-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/4aa9a08cc07b/ijms-25-01655-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/c1fae6d104f0/ijms-25-01655-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/10855161/e59ab4a480a6/ijms-25-01655-g003.jpg

相似文献

[1]
TEMINET: A Co-Informative and Trustworthy Multi-Omics Integration Network for Diagnostic Prediction.

Int J Mol Sci. 2024-1-29

[2]
MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.

BMC Med Inform Decis Mak. 2023-5-5

[3]
MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.

Int J Mol Sci. 2024-2-28

[4]
Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.

Comput Biol Med. 2023-9

[5]
TMODINET: A trustworthy multi-omics dynamic learning integration network for cancer diagnostic.

Comput Biol Chem. 2024-12

[6]
MOSDNET: A multi-omics classification framework using simplified multi-view deep discriminant representation learning and dynamic edge GCN with multi-task learning.

Comput Biol Med. 2024-10

[7]
Multi-omics integration method based on attention deep learning network for biomedical data classification.

Comput Methods Programs Biomed. 2023-4

[8]
A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.

BMC Genomics. 2024-1-22

[9]
Uncertainty-aware dynamic integration for multi-omics classification of tumors.

J Cancer Res Clin Oncol. 2023-7

[10]
moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.

PeerJ. 2024

引用本文的文献

[1]
A Map of the Lipid-Metabolite-Protein Network to Aid Multi-Omics Integration.

Biomolecules. 2025-3-26

[2]
Special Issue "Machine Learning and Bioinformatics in Human Health and Disease"-Chances and Challenges.

Int J Mol Sci. 2024-11-28

[3]
Graph Neural Network-Based Drug Gene Interactions of Wnt/β-Catenin Pathway in Bone Formation.

Cureus. 2024-9-4

[4]
The ROSMAP project: aging and neurodegenerative diseases through omic sciences.

Front Neuroinform. 2024-9-16

本文引用的文献

[1]
Undisclosed, unmet and neglected challenges in multi-omics studies.

Nat Comput Sci. 2021-6

[2]
SpaRx: elucidate single-cell spatial heterogeneity of drug responses for personalized treatment.

Brief Bioinform. 2023-9-22

[3]
Differential gene expression analysis based on linear mixed model corrects false positive inflation for studying quantitative traits.

Sci Rep. 2023-10-3

[4]
SiGra: single-cell spatial elucidation through an image-augmented graph transformer.

Nat Commun. 2023-9-12

[5]
Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data.

Front Syst Biol. 2023

[6]
MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.

BMC Med Inform Decis Mak. 2023-5-5

[7]
Trusted Multi-View Classification With Dynamic Evidential Fusion.

IEEE Trans Pattern Anal Mach Intell. 2023-2

[8]
Multi-level attention graph neural network based on co-expression gene modules for disease diagnosis and prognosis.

Bioinformatics. 2022-4-12

[9]
Multimodal deep learning for biomedical data fusion: a review.

Brief Bioinform. 2022-3-10

[10]
ADD3 Deletion in Glioblastoma Predicts Disease Status and Survival.

Front Oncol. 2021-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索