Suppr超能文献

建立和验证用于预测中风患者髋部骨折风险的列线图:一项多中心回顾性研究。

Establishment and validation of a nomogram for predicting the risk of hip fracture in patients with stroke: A multicenter retrospective study.

机构信息

Harbin Medical University, Harbin, China; Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.

出版信息

J Clin Neurosci. 2024 Oct;128:110801. doi: 10.1016/j.jocn.2024.110801. Epub 2024 Aug 20.

Abstract

PURPOSE

There are currently no models for predicting hip fractures after stroke. This study wanted to investigate the risk factors leading to hip fracture in stroke patients and to establish a risk prediction model to visualize this risk.

PATIENTS AND METHODS

We reviewed 439 stroke patients with or without hip fractures admitted to the Affiliated Hospital of Xuzhou Medical University from June 2014 to June 2017 as the training set, and collected 83 patients of the same type from the First Affiliated Hospital of Harbin Medical University and the Affiliated Hospital of Xuzhou Medical University from June 2020 to June 2023 as the testing set. Patients were divided into fracture group and non-fracture group based on the presence of hip fractures. Multivariate logistic regression analysis was used to screen for meaningful factors. Nomogram predicting the risk of hip fracture occurrence were created based on the multifactor analysis, and performance was evaluated using receiver operating characteristic curve (ROC), calibration curves, and decision curve analysis (DCA). A web calculator was created to facilitate a more convenient interactive experience for clinicians.

RESULTS

In training set, there were 35 cases (7.9 %) of hip fractures after stroke, while in testing set, this data was 13 cases (15.6 %). In training set, univariate analysis showed significant differences between the two groups in the number of falls, smoking, hypertension, glucocorticoids, number of strokes, Mini-Mental State Examination (MMSE), visual acuity level, National Institute of Health stroke scale (NIHSS), Berg Balance Scale (BBS), and Stop Walking When Talking (SWWT) (P<0.05). Multivariate analysis showed that number of falls [OR=17.104, 95 % CI (3.727-78.489), P = 0.000], NIHSS [OR=1.565, 95 % CI (1.193-2.052), P = 0.001], SWWT [OR=12.080, 95 % CI (2.398-60.851), P = 0.003] were independent risk factors positively associated with new fractures. BMD [OR = 0.155, 95 % CI (0.044-0.546), P = 0.012] and BBS [OR = 0.840, 95 % CI (0.739-0.954), P = 0.007] were negatively associated with new fractures. The area under the curve (AUC) of nomogram were 0.939 (95 % CI: 0.748-0.943) and 0.980 (95 % CI: 0.886-1.000) in training and testing sets, respectively, and the calibration curves showed a high agreement between predicted and actual status with an area under the decision curve of 0.034 and 0.109, respectively.

CONCLUSIONS

The number of falls, fracture history, low BBS score, high NIHSS score, and positive SWWT are risk factors for hip fracture after stroke. Based on this, a nomogram with high accuracy was developed and a web calculator (https://stroke.shinyapps.io/DynNomapp/) was created.

摘要

目的

目前尚无预测中风后髋部骨折的模型。本研究旨在探讨导致中风患者髋部骨折的风险因素,并建立风险预测模型以可视化这种风险。

方法

我们回顾了 2014 年 6 月至 2017 年 6 月期间在徐州医科大学附属医院收治的 439 例伴有或不伴有髋部骨折的中风患者作为训练集,并从哈尔滨医科大学第一附属医院和徐州医科大学附属医院收集了 2020 年 6 月至 2023 年 6 月期间的 83 例相同类型的患者作为测试集。根据是否存在髋部骨折,将患者分为骨折组和非骨折组。使用多变量逻辑回归分析筛选有意义的因素。基于多因素分析,建立预测髋部骨折发生风险的列线图,并使用接收者操作特征曲线(ROC)、校准曲线和决策曲线分析(DCA)评估性能。创建了一个网络计算器,以方便临床医生更方便地进行交互。

结果

在训练集中,有 35 例(7.9%)发生中风后髋部骨折,而在测试集中,这一数据为 13 例(15.6%)。在训练集中,单因素分析显示两组之间在跌倒次数、吸烟、高血压、糖皮质激素、中风次数、简易精神状态检查(MMSE)、视力水平、美国国立卫生研究院中风量表(NIHSS)、伯格平衡量表(BBS)和停止说话时行走(SWWT)方面存在显著差异(P<0.05)。多因素分析显示,跌倒次数[比值比(OR)=17.104,95%置信区间(CI)(3.727-78.489),P=0.000]、NIHSS[OR=1.565,95%CI(1.193-2.052),P=0.001]、SWWT[OR=12.080,95%CI(2.398-60.851),P=0.003]是与新发骨折呈正相关的独立危险因素。骨密度[OR=0.155,95%CI(0.044-0.546),P=0.012]和 BBS[OR=0.840,95%CI(0.739-0.954),P=0.007]与新发骨折呈负相关。列线图的曲线下面积(AUC)在训练集和测试集中分别为 0.939(95%CI:0.748-0.943)和 0.980(95%CI:0.886-1.000),校准曲线显示预测和实际状态之间具有高度一致性,决策曲线下面积分别为 0.034 和 0.109。

结论

跌倒次数、骨折史、BBS 评分低、NIHSS 评分高和 SWWT 阳性是中风后髋部骨折的风险因素。在此基础上,开发了一个具有较高准确性的列线图,并创建了一个网络计算器(https://stroke.shinyapps.io/DynNomapp/)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验