Suppr超能文献

基于改进 U-Net 的波束形成器的平面波超声成像重建。

Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.

机构信息

Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, South Korea.

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea.

出版信息

Comput Med Imaging Graph. 2022 Jun;98:102073. doi: 10.1016/j.compmedimag.2022.102073. Epub 2022 May 10.

Abstract

An image reconstruction method that can simultaneously provide high image quality and frame rate is necessary for diagnosis on cardiovascular imaging but is challenging for plane-wave ultrasound imaging. To overcome this challenge, an end-to-end ultrasound image reconstruction method is proposed for reconstructing a high-resolution B-mode image from radio frequency (RF) data. A modified U-Net architecture that adopts EfficientNet-B5 and U-Net as the encoder and decoder parts, respectively, is proposed as a deep learning beamformer. The training data comprise pairs of pre-beamformed RF data generated from random scatterers with random amplitudes and corresponding high-resolution target data generated from coherent plane-wave compounding (CPWC). To evaluate the performance of the proposed beamforming model, simulation and experimental data are used for various beamformers, such as delay-and-sum (DAS), CPWC, and other deep learning beamformers, including U-Net and EfficientNet-B0. Compared with single plane-wave imaging with DAS, the proposed beamforming model reduces the lateral full width at half maximum by 35% for simulation and 29.6% for experimental data and improves the contrast-to-noise ratio and peak signal-to-noise ratio, respectively, by 6.3 and 9.97 dB for simulation, 2.38 and 3.01 dB for experimental data, and 3.18 and 1.03 dB for in vivo data. Furthermore, the computational complexity of the proposed beamforming model is four times less than that of the U-Net beamformer. The study results demonstrate that the proposed ultrasound image reconstruction method employing a deep learning beamformer, trained by the RF data from scatterers, can reconstruct a high-resolution image with a high frame rate for single plane-wave ultrasound imaging.

摘要

一种能够同时提供高质量图像和帧率的图像重建方法,对于心血管成像的诊断是必要的,但对于平面波超声成像来说是具有挑战性的。为了克服这一挑战,本文提出了一种端到端的超声图像重建方法,用于从射频(RF)数据重建高分辨率 B 模式图像。作为一种深度学习波束形成器,提出了一种采用 EfficientNet-B5 和 U-Net 分别作为编码器和解码器部分的改进的 U-Net 架构。训练数据包括从具有随机幅度的随机散射体生成的预波束形成 RF 数据对,以及从相干平面波复合(CPWC)生成的对应高分辨率目标数据。为了评估所提出的波束形成模型的性能,使用模拟和实验数据对各种波束形成器进行了评估,例如延迟和求和(DAS)、CPWC 和其他深度学习波束形成器,包括 U-Net 和 EfficientNet-B0。与具有 DAS 的单平面波成像相比,所提出的波束形成模型使模拟的横向全宽半最大值降低了 35%,实验数据降低了 29.6%,模拟的对比度噪声比和峰值信噪比分别提高了 6.3 和 9.97 dB,实验数据提高了 2.38 和 3.01 dB,体内数据提高了 3.18 和 1.03 dB。此外,所提出的波束形成模型的计算复杂度比 U-Net 波束形成器低四倍。研究结果表明,采用散射体 RF 数据训练的深度学习波束形成器的超声图像重建方法,能够为单平面波超声成像重建具有高帧率的高分辨率图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验