Suppr超能文献

模拟病毒合并感染期间的旁观者效应。

Modeling the bystander effect during viral coinfection.

作者信息

Noffel Zakarya, Dobrovolny Hana M

机构信息

University of Texas at Austin, Department of Computer Science, Asutin, TX, United States.

Texas Christian University, Department of Physics & Astronomy, Fort Worth, 76129, TX, United States.

出版信息

J Theor Biol. 2024 Nov 7;594:111928. doi: 10.1016/j.jtbi.2024.111928. Epub 2024 Aug 20.

Abstract

Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited.

摘要

病毒合并感染是导致因流感样疾病住院患者中相当一部分病例的原因。随着我们对病毒合并感染的认识不断提高,研究人员已开始通过实验研究这些感染背后的一些病毒 - 病毒相互作用。病毒之间相互作用的一种机制是通过先天免疫反应。这似乎主要通过干扰素反应发生,干扰素反应在附近未感染的细胞中产生抗病毒状态,这一现象被称为旁观者效应。在此,我们建立了一个通过旁观者效应相互作用的两种病毒的数学模型。我们发现,当细胞进入受保护状态的清除率很高时,第一种病毒的生长受到抑制,而第二种病毒则可独自利用受保护的细胞,从而促进其生长。相反,如果第二种病毒感染受保护细胞的能力有限,其生长可能会被完全抑制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验