Suppr超能文献

可解释机器学习驱动的预测性能和工艺参数优化用于己酸生产。

Explainable machine learning-driven predictive performance and process parameter optimization for caproic acid production.

机构信息

Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.

Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, 100083, China.

出版信息

Bioresour Technol. 2024 Oct;410:131311. doi: 10.1016/j.biortech.2024.131311. Epub 2024 Aug 19.

Abstract

In this study, four machine learning (ML) prediction models were developed to predict and optimize the production performance of caproic acid based on substrates, products, and process parameters. The XGBoost outperformed others, with a high R of 0.998 on the training set and 0.885 on the test set. Feature importance analysis revealed hydraulic retention time (HRT) and butyric acid concentration are decisive. The SHAP method offered profound insights into the interplay and cumulative effects of substrate composition, identified the synergistic effects between butyric acid and lactic acid, and emphasized adding glucose can benefit caproic with lactic acid co-fermentation. By integrating the Adaptive Variation Particle Swarm Optimization (AVPSO) algorithm, the optimal process conditions to achieve a maximum caproic acid production of 8.64 g/L was obtained. This study not only advances caproic acid production but contributes a versatile ML-driven strategy applicable to bioprocess optimizations, potentially transformative for sustainable and economically viable bioproduction.

摘要

本研究旨在基于底物、产物和工艺参数,建立四种机器学习(ML)预测模型,以预测和优化己酸的生产性能。XGBoost 的表现优于其他模型,在训练集和测试集上的 R 值分别高达 0.998 和 0.885。特征重要性分析表明水力停留时间(HRT)和丁酸浓度是决定性因素。SHAP 方法深入分析了底物组成之间的相互作用和累积效应,确定了丁酸和乳酸之间的协同作用,并强调添加葡萄糖有利于己酸与乳酸的共发酵。通过集成自适应变异粒子群优化(AVPSO)算法,获得了实现最大己酸产量 8.64 g/L 的最佳工艺条件。本研究不仅推进了己酸的生产,还提供了一种多功能的基于机器学习的策略,适用于生物工艺优化,可能为可持续和经济可行的生物生产带来变革。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验