Malashin Ivan, Martysyuk Dmitriy, Tynchenko Vadim, Gantimurov Andrei, Semikolenov Andrey, Nelyub Vladimir, Borodulin Aleksei
Bauman Moscow State Technical University, 105005 Moscow, Russia.
Far Eastern Federal University, 690922 Vladivostok, Russia.
Polymers (Basel). 2024 Nov 29;16(23):3368. doi: 10.3390/polym16233368.
The integration of machine learning (ML) into material manufacturing has driven advancements in optimizing biopolymer production processes. ML techniques, applied across various stages of biopolymer production, enable the analysis of complex data generated throughout production, identifying patterns and insights not easily observed through traditional methods. As sustainable alternatives to petrochemical-based plastics, biopolymers present unique challenges due to their reliance on variable bio-based feedstocks and complex processing conditions. This review systematically summarizes the current applications of ML techniques in biopolymer production, aiming to provide a comprehensive reference for future research while highlighting the potential of ML to enhance efficiency, reduce costs, and improve product quality. This review also shows the role of ML algorithms, including supervised, unsupervised, and deep learning algorithms, in optimizing biopolymer manufacturing processes.
将机器学习(ML)集成到材料制造中推动了生物聚合物生产工艺优化方面的进展。ML技术应用于生物聚合物生产的各个阶段,能够分析生产过程中产生的复杂数据,识别传统方法不易观察到的模式和见解。作为石化基塑料的可持续替代品,生物聚合物由于依赖可变的生物基原料和复杂的加工条件而面临独特挑战。本综述系统地总结了ML技术在生物聚合物生产中的当前应用,旨在为未来研究提供全面参考,同时突出ML在提高效率、降低成本和改善产品质量方面的潜力。本综述还展示了ML算法,包括监督学习、无监督学习和深度学习算法,在优化生物聚合物制造工艺中的作用。