Sinai University, Faculty of Dentistry, Arish, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, Sinai Governorate, Egypt.
Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
Prog Brain Res. 2024;289:181-191. doi: 10.1016/bs.pbr.2024.06.008. Epub 2024 Jun 21.
The physiological structure and functioning of the brain are determined by activity-dependent processes and affected by "synapse plasticity." Because chemical transmitters target and regulate synapses, exogenous chemical stimulants and transmitters can alter their physiological functions by interacting with synaptic surface receptors or chemical modulators. Caffeine, a commonly used pharmacologic substance, can target and alter synapses. It impact various biological, chemical, and metabolic processes related to synaptic function. This chapter investigates how caffeine affects fluctuations in structure and function in the hippocampus formation and neocortical structure, regions known for their high synaptic plasticity profile. Specifically, caffeine modulates various synaptic receptors and channel activities by mobilizing intracellular calcium, inhibiting phosphodiesterase, and blocking adenosine and GABA cellular receptors. These caffeine-induced pathways and functions allow neurons to generate plastic modulations in synaptic actions such as efficient and morphological transmission. Moreover, at a network level, caffeine can stimulate neural oscillators in the cortex, resulting in repetitive signals that strengthen long-range communication between cortical areas reliant on N-methyl-d-aspartate receptors. This suggests that caffeine could facilitate the reorganization of cortical network functions through its effects on synaptic mobilization.
大脑的生理结构和功能取决于活动依赖性过程,并受到“突触可塑性”的影响。由于化学递质靶向并调节突触,外源性化学刺激物和递质可以通过与突触表面受体或化学调节剂相互作用来改变其生理功能。咖啡因是一种常用的药物物质,它可以靶向并改变突触。它影响与突触功能相关的各种生物、化学和代谢过程。本章研究咖啡因如何影响海马体形成和新皮层结构的结构和功能波动,这些区域以其高突触可塑性为特征。具体来说,咖啡因通过动员细胞内钙、抑制磷酸二酯酶以及阻断腺苷和 GABA 细胞受体来调节各种突触受体和通道活性。这些咖啡因诱导的途径和功能允许神经元在突触作用中产生有效的形态传递等可塑性调节。此外,在网络层面上,咖啡因可以刺激皮层中的神经振荡器,产生重复的信号,从而增强依赖 N-甲基-D-天冬氨酸受体的皮质区域之间的远程通信。这表明咖啡因可以通过其对突触动员的影响促进皮质网络功能的重组。