Suppr超能文献

从单个散斑图像无创估计粉末粒度分布

Non-invasive estimation of the powder size distribution from a single speckle image.

作者信息

Zhang Qihang, Pandit Ajinkya, Liu Zhiguang, Guo Zhen, Muddu Shashank, Wei Yi, Pereg Deborah, Nazemifard Neda, Papageorgiou Charles, Yang Yihui, Tang Wenlong, Braatz Richard D, Myerson Allan S, Barbastathis George

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, 117543, Singapore.

出版信息

Light Sci Appl. 2024 Aug 21;13(1):200. doi: 10.1038/s41377-024-01563-6.

Abstract

Non-invasive characterization of powders may take one of two approaches: imaging and counting individual particles; or relying on scattered light to estimate the particle size distribution (PSD) of the ensemble. The former approach runs into practical difficulties, as the system must conform to the working distance and other restrictions of the imaging optics. The latter approach requires an inverse map from the speckle autocorrelation to the particle sizes. The principle relies on the pupil function determining the basic sidelobe shape, whereas the particle size spread modulates the sidelobe intensity. We recently showed that it is feasible to invert the speckle autocorrelation and obtain the PSD using a neural network, trained efficiently through a physics-informed semi-generative approach. In this work, we eliminate one of the most time-consuming steps of our previous method by engineering the pupil function. By judiciously blocking portions of the pupil, we sacrifice some photons but in return we achieve much enhanced sidelobes and, hence, higher sensitivity to the change of the size distribution. The result is a 60 × reduction in total acquisition and processing time, or 0.25 seconds per frame in our implementation. Almost real-time operation in our system is not only more appealing toward rapid industrial adoption, it also paves the way for quantitative characterization of complex spatial or temporal dynamics in drying, blending, and other chemical and pharmaceutical manufacturing processes.

摘要

粉末的非侵入性表征可采用两种方法之一

对单个颗粒进行成像和计数;或者依靠散射光来估计总体颗粒尺寸分布(PSD)。前一种方法存在实际困难,因为系统必须符合成像光学器件的工作距离和其他限制。后一种方法需要从散斑自相关到颗粒尺寸的逆映射。该原理依赖于光瞳函数来确定基本旁瓣形状,而颗粒尺寸分布则调制旁瓣强度。我们最近表明,使用通过物理信息半生成方法有效训练的神经网络来反转散斑自相关并获得PSD是可行的。在这项工作中,我们通过设计光瞳函数消除了我们先前方法中最耗时的步骤之一。通过明智地遮挡光瞳的部分区域,我们牺牲了一些光子,但作为回报,我们实现了大大增强的旁瓣,因此对尺寸分布变化的敏感度更高。结果是总采集和处理时间减少了60倍,在我们的实现中每帧为0.25秒。我们系统中的几乎实时操作不仅对工业快速采用更具吸引力,还为干燥、混合以及其他化学和制药制造过程中复杂空间或时间动态的定量表征铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b2/11339358/0dc75e8fbf5c/41377_2024_1563_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验