Suppr超能文献

用基于物理增强自相关的估计器(PEACE)从激光散斑中提取颗粒大小分布。

Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE).

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Nat Commun. 2023 Mar 1;14(1):1159. doi: 10.1038/s41467-023-36816-2.

Abstract

Extracting quantitative information about highly scattering surfaces from an imaging system is challenging because the phase of the scattered light undergoes multiple folds upon propagation, resulting in complex speckle patterns. One specific application is the drying of wet powders in the pharmaceutical industry, where quantifying the particle size distribution (PSD) is of particular interest. A non-invasive and real-time monitoring probe in the drying process is required, but there is no suitable candidate for this purpose. In this report, we develop a theoretical relationship from the PSD to the speckle image and describe a physics-enhanced autocorrelation-based estimator (PEACE) machine learning algorithm for speckle analysis to measure the PSD of a powder surface. This method solves both the forward and inverse problems together and enjoys increased interpretability, since the machine learning approximator is regularized by the physical law.

摘要

从成像系统中提取高度散射表面的定量信息具有挑战性,因为光的相位在传播过程中会经历多次折叠,从而导致复杂的散斑模式。一个特定的应用是制药行业中湿粉末的干燥,其中量化颗粒尺寸分布(PSD)特别有趣。需要在干燥过程中使用非侵入式和实时监测探头,但目前没有适合的候选探头。在本报告中,我们从 PSD 到散斑图像建立了理论关系,并描述了一种基于物理增强自相关的估计算法(PEACE),用于散斑分析以测量粉末表面的 PSD。该方法一起解决了正向和逆向问题,并具有更高的可解释性,因为机器学习逼近器受到物理定律的正则化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6347/9977959/264edbe4ec07/41467_2023_36816_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验