Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.
Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea.
Mol Pharm. 2024 Oct 7;21(10):5005-5014. doi: 10.1021/acs.molpharmaceut.4c00412. Epub 2024 Aug 22.
Biodegradable radioactive microspheres labeled with positron emitters hold significant promise for diagnostic and therapeutic applications in cancers and other diseases, including arthritis. The alginate-based polymeric microspheres offer advantages such as biocompatibility, biodegradability, and improved stability, making them suitable for clinical applications. In this study, we developed novel positron emission tomography (PET) microspheres using alginate biopolymer radiolabeled with gallium-68 (Ga) through a straightforward conjugation reaction. Polyethylenimine (PEI)-decorated calcium alginate microspheres (PEI-CAMSs) were fabricated and further modified using azadibenzocyclooctyne--hydroxysuccinimide ester (ADIBO-NHS). Subsequently, azide-functionalized NOTA chelator (N-NOTA) was labeled with [Ga]Ga to obtain [Ga]Ga-NOTA-N, which was then reacted with the surface-modified PEI-CAMSs using strain-promoted alkyne-azide cycloaddition (SPAAC) reaction to develop [Ga]Ga-NOTA-PEI-CAMSs, a novel PET microsphere. The radiolabeling efficiency and radiochemical stability of [Ga]Ga-NOTA-PEI-CAMSs were determined using the radio-instant thin-layer chromatography-silica gel (radio-ITLC-SG) method. The PET images were also acquired to study the stability of the radiolabeled microspheres in normal mice. The radiolabeling efficiency of [Ga]Ga-NOTA-PEI-CAMSs was over 99%, and the microspheres exhibited high stability (92%) in human blood serum. PET images demonstrated the stability and biodistribution of the microspheres in mice for up to 2 h post injection. This study highlights the potential of biodegradable PET microspheres for preoperative imaging and targeted radionuclide therapy. Overall, the straightforward synthesis method and efficient radiolabeling technique provide a promising platform for the development of theranostic microspheres using other radionuclides such as Y, Lu, Re, and Cu.
放射性可降解微球用正电子发射体标记,在癌症和其他疾病(包括关节炎)的诊断和治疗应用中具有重要的应用前景。基于海藻酸盐的聚合物微球具有生物相容性、可生物降解性和稳定性提高等优点,使其适合临床应用。在这项研究中,我们使用通过简单的缀合反应用镓-68(Ga)标记的海藻酸盐生物聚合物开发了新型正电子发射断层扫描(PET)微球。制备了聚乙烯亚胺(PEI)修饰的海藻酸钙微球(PEI-CAMSs),并用叠氮基-二苯并环辛炔-羟基琥珀酰亚胺酯(ADIBO-NHS)进一步修饰。随后,用叠氮基功能化 NOTA 螯合剂(N-NOTA)标记 [Ga]Ga,得到 [Ga]Ga-NOTA-N,然后通过应变促进的炔-叠氮环加成(SPAAC)反应与表面修饰的 PEI-CAMSs 反应,开发出 [Ga]Ga-NOTA-PEI-CAMSs,一种新型的 PET 微球。使用放射性即时薄层色谱-硅胶(radio-ITLC-SG)法测定 [Ga]Ga-NOTA-PEI-CAMSs 的放射标记效率和放射化学稳定性。还进行了 PET 成像以研究放射性标记微球在正常小鼠体内的稳定性。[Ga]Ga-NOTA-PEI-CAMSs 的放射标记效率超过 99%,并且微球在人血清中表现出高稳定性(92%)。PET 图像显示,微球在注射后 2 小时内的稳定性和生物分布在小鼠体内。这项研究突出了可生物降解的 PET 微球在术前成像和靶向放射性核素治疗中的潜力。总的来说,简单的合成方法和高效的放射标记技术为使用其他放射性核素(如 Y、Lu、Re 和 Cu)开发治疗性微球提供了有前途的平台。