Houssier C, Grosjean H
Laboratoire de Chimie Physique, Université de Liège, Belgium.
J Biomol Struct Dyn. 1985 Oct;3(2):387-408. doi: 10.1080/07391102.1985.10508425.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the UCC anticodon of E. coli tRNA(Gly(2] (where U is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.
我们运用温度跃变弛豫技术来测定具有互补反密码子的以下tRNA对之间缔合的动力学和热力学参数:tRNA(Ser)与tRNA(Gly)、tRNA(Cys)与tRNA(Ala)以及tRNA(Trp)与tRNA(Pro)。大肠杆菌tRNA(Ser)的反密码子序列GGA与大肠杆菌tRNA(Gly)[2]的UCC反密码子互补(其中U是一种仍未知的修饰尿苷碱基),并且在这两种tRNA中A37均未被修饰。大肠杆菌tRNA(Ala)具有VGC反密码子(V是5 - 氧乙酸尿苷),而tRNA(Cys)具有互补的GCA反密码子,在3'侧有一个修饰的腺嘌呤,即在大肠杆菌tRNA(Cys)中为2 - 甲硫基N6 - 异戊烯基腺嘌呤(mS2i6A37),在酵母tRNA(Cys)中为N6 - 异戊烯基腺嘌呤(i6A37)。啤酒酵母tRNA(Trp)(反密码子CmCA)在核苷酸序列的几个位置上与野生型大肠杆菌tRNA(Trp)(反密码子CCA)不同。然而,在反密码子环中,仅存在两个有趣的差异:A37未被修饰,而在第一个反密码子位置的C34被修饰成核糖2'-O甲基衍生物(Cm)。相应的互补tRNA是具有VGG反密码子的大肠杆菌tRNA(Pro)。我们的结果表明,反密码子碱基的性质和序列及其在反密码子环中最近邻碱基(特别是在3'侧的37位)具有主导作用;未检测到其他tRNA茎中修饰的可检测影响。我们发现与相同残基的异戊烯基修饰相比,甲硫基对i6A37具有很强的稳定作用。到目前为止,我们还无法评估与未修饰的A37相比,单独异戊烯基修饰的效果。用复杂的酵母tRNA(Trp)-大肠杆菌tRNA(Pro)获得的结果还表明,将C34修饰为Cm34不会显著增加tRNA(Trp)与其在tRNA(Pro)中的互补反密码子缔合的稳定性。根据反密码子三联体之间以及与相邻嘌呤碱基之间的链间和链内堆积相互作用以及可能的生物学意义对这些观察结果进行了讨论。