Suppr超能文献

大肠杆菌δ2-异戊烯基焦磷酸:tRNA δ2-异戊烯基转移酶对转运RNA的识别:依赖于反密码子臂结构

Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.

作者信息

Motorin Y, Bec G, Tewari R, Grosjean H

机构信息

C.N.R.S., Laboratoire d'Enzymologie et Biochimie Structurales, Gif-sur-Yvette, France.

出版信息

RNA. 1997 Jul;3(7):721-33.

Abstract

To elucidate the sequence elements required in the anticodon stem for the recognition of Escherichia coli tRNA(Ser) (GGA) by the E. coli isopentenyl-tRNA:A37 transferase (IPTT), which result in the conversion of A37 into isopentenylated i6A37, we have tested and characterized in vitro T7-runoff transcripts of 17 variants of E. coli tRNA(Ser)(GGA) and 7 other tRNAs from E. coli and yeast. Our results indicate that, instead of a stringent specific anticodon stem and loop sequence, the key feature required for the recognition of E. coli tRNAs by IPTT is the A36A37A38 sequence occurring within the seven-membered anticodon loop, and the retention of the standard helical structure and flexibility, especially in the proximal anticodon stem. The G30*U40 mismatch base pair close to the anticodon loop is strictly avoided. The frequent occurrence of a C-G base pair in the three stem locations closest to the loop (positions 29-41, 30-40 and 31-39) or the occurrence of even one such C-G base pair along with some other similarly less suited, but individually tolerated deviations can also totally abolish the A37 isopentenylation of tRNA. For the position 30-40, the G-C base pair is shown uniquely suited, whereas for the adjoining 29-41 stem location, a purine-pyrimidine base pair with pyrimidine on the 3'-side is strongly preferred. Retention of the overall 3D tRNA structure is favorable for isopentenylation and allows some tolerance of proximal stem sequence deviations. Our data suggest a recognition mode that implies the interaction of IPTT with the strictly conserved A36A37A38 sequence and the other functional groups located in the minor groove of the anticodon stem.

摘要

为了阐明反密码子茎中大肠杆菌异戊烯基 - tRNA:A37转移酶(IPTT)识别大肠杆菌tRNA(Ser)(GGA)所需的序列元件,该酶可将A37转化为异戊烯基化的i6A37,我们对17种大肠杆菌tRNA(Ser)(GGA)变体以及来自大肠杆菌和酵母的7种其他tRNA的体外T7 - 径流转录本进行了测试和表征。我们的结果表明,IPTT识别大肠杆菌tRNA所需的关键特征不是严格特定的反密码子茎环序列,而是七元反密码子环内出现的A36A37A38序列,以及保留标准的螺旋结构和灵活性,特别是在近端反密码子茎中。必须严格避免靠近反密码子环的G30*U40错配碱基对。在最靠近环的三个茎位置(29 - 41位、30 - 40位和31 - 39位)频繁出现C - G碱基对,或者即使出现一个这样的C - G碱基对以及一些其他同样不太合适但单独可耐受的偏差,也会完全消除tRNA的A37异戊烯基化。对于30 - 40位,G - C碱基对显示出独特的适宜性,而对于相邻的29 - 41茎位置,强烈优选3'侧为嘧啶的嘌呤 - 嘧啶碱基对。保留整体tRNA三维结构有利于异戊烯基化,并允许近端茎序列偏差有一定的耐受性。我们的数据表明了一种识别模式,即IPTT与严格保守的A36A37A38序列以及位于反密码子茎小沟中的其他功能基团相互作用。

相似文献

2
tRNA leucine identity and recognition sets.
J Mol Biol. 2000 May 19;298(5):779-93. doi: 10.1006/jmbi.2000.3694.
8
Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase.
J Mol Biol. 1999 Nov 12;293(5):1029-38. doi: 10.1006/jmbi.1999.3219.
9
The Candida albicans CUG-decoding ser-tRNA has an atypical anticodon stem-loop structure.
J Mol Biol. 1999 Nov 12;293(5):1039-53. doi: 10.1006/jmbi.1999.3209.

引用本文的文献

1
Purification of post-transcriptionally modified tRNAs for enhanced cell-free translation systems.
bioRxiv. 2025 Jun 10:2025.06.10.658963. doi: 10.1101/2025.06.10.658963.
2
The life and times of a tRNA.
RNA. 2023 Jul;29(7):898-957. doi: 10.1261/rna.079620.123. Epub 2023 Apr 13.
3
A versatile tRNA modification-sensitive northern blot method with enhanced performance.
RNA. 2022 Mar;28(3):418-432. doi: 10.1261/rna.078929.121. Epub 2021 Dec 20.
4
Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles.
PLoS Genet. 2020 Apr 23;16(4):e1008330. doi: 10.1371/journal.pgen.1008330. eCollection 2020 Apr.
5
A rationale for tRNA modification circuits in the anticodon loop.
RNA. 2018 Oct;24(10):1277-1284. doi: 10.1261/rna.067736.118. Epub 2018 Jul 19.
6
Selective terminal methylation of a tRNA wobble base.
Nucleic Acids Res. 2018 Apr 20;46(7):e37. doi: 10.1093/nar/gky013.
7
The modified base isopentenyladenosine and its derivatives in tRNA.
RNA Biol. 2017 Sep 2;14(9):1197-1208. doi: 10.1080/15476286.2017.1294309. Epub 2017 Feb 17.
9
Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor.
Mol Cell Biol. 2013 Dec;33(24):4900-8. doi: 10.1128/MCB.01041-13. Epub 2013 Oct 14.
10
Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.
Mol Cell Biol. 2013 Aug;33(15):2918-29. doi: 10.1128/MCB.00278-13. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验