Suppr超能文献

通过先进的联合动力与制冷循环及双LNG冷能利用提升热力性能。

Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization.

作者信息

Baigh Tajwar A, Saif Mostofa J, Mustakim Ashraf, Nanzeeba Fairooz, Khan Yasin, Ehsan M Monjurul

机构信息

Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, 1704, Gazipur, Bangladesh.

出版信息

Heliyon. 2024 Aug 3;10(15):e35748. doi: 10.1016/j.heliyon.2024.e35748. eCollection 2024 Aug 15.

Abstract

Utilizing waste heat to drive thermodynamic systems is imperative for improving energy efficiency, thereby improving sustainability. A combined cooling and power systems (CCP) utilizes heat from a temperature source to deliver both power and cooling. However, CCP systems utilizing LNG cold energy suffers from low second law efficiency due to significant temperature differences. To address this, an "Advanced Power and Cooling with LNG Utilization (ACPLU)" system is proposed, integrating a cascaded transcritical carbon dioxide (TCO)-LNG cycle with an Organic Rankine cycle (ORC) for improved power generation and an absorption refrigeration system (ARS) for simultaneous cooling. This study evaluates the second law efficiency, net work output, and exergy destruction performance through a sensitivity analysis, optimizing variables such as heat source temperature, superheater temperature difference, ORC and CO turbine inlet and condenser pressures, evaporator temperature, and pinch point temperatures of heat exchangers and generator. Compared to previous studies on CCP systems, the ACPLU shows a superior performance, with a second law efficiency of 27.3 % and a net work output of 11.76 MW. Cyclopentane as an ORC working fluid resulted in the highest second law efficiency of 29.06 % and net work output of 12.27 MW. Parametric analysis suggested that heat source temperature significantly impacts net power output. The exergy analysis concluded that a high-pressure ratio and good thermal match between the heat exchangers enhance overall performance. Utilizing artificial neural network (ANN) to produce a multiple-input-multiple-output (MIMO) objective function and performing multi-objective optimization (MOO) using genetic algorithm (GA), an improved second law efficiency and net power output by 28.11 % and 14.16 MW respectively, with pentane as the working fluid, is demonstrated. An average cost rate of 9.121 $/GJ was observed through a thermo-economic analysis. The ACPLU system is promising for medium temperature waste heat recovery, such as, pharmaceutical manufacturing plants.

摘要

利用废热驱动热力系统对于提高能源效率进而提升可持续性至关重要。联合冷却与供电系统(CCP)利用来自温度源的热量来同时提供电力和制冷。然而,利用液化天然气冷能的CCP系统由于显著的温差而存在较低的第二定律效率。为了解决这个问题,提出了一种“利用液化天然气的先进发电与冷却(ACPLU)”系统,该系统将级联跨临界二氧化碳(TCO)-液化天然气循环与有机朗肯循环(ORC)相结合以提高发电效率,并与吸收式制冷系统(ARS)相结合以实现同时制冷。本研究通过敏感性分析评估了第二定律效率、净功输出和㶲损失性能,优化了诸如热源温度、过热器温差、ORC和CO涡轮机入口及冷凝器压力、蒸发器温度以及热交换器和发生器的节点温度等变量。与先前关于CCP系统的研究相比,ACPLU表现出卓越的性能,第二定律效率为27.3%,净功输出为11.76兆瓦。环戊烷作为ORC工质时,第二定律效率最高可达29.06%,净功输出为12.27兆瓦。参数分析表明,热源温度对净功率输出有显著影响。㶲分析得出结论,高压比以及热交换器之间良好的热匹配可提高整体性能。利用人工神经网络(ANN)生成多输入多输出(MIMO)目标函数,并使用遗传算法(GA)进行多目标优化(MOO),结果表明,以戊烷作为工质时,第二定律效率提高了28.11%,净功率输出提高了14.16兆瓦。通过热经济分析观察到平均成本率为9.121美元/吉焦。ACPLU系统在中温废热回收方面具有潜力,例如制药厂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98b5/11337048/3c83a5ec3ab0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验