Suppr超能文献

利用三维卷积神经网络和三维可见-近红外多模态成像技术增强非接触式血氧饱和度测量。

Leveraging 3D convolutional neural network and 3D visible-near-infrared multimodal imaging for enhanced contactless oximetry.

机构信息

Ilmenau University of Technology, Department of Mechanical Engineering, Ilmenau, Germany.

University of Duisburg-Essen, Chair of Electronic Components and Circuits, Duisburg, Germany.

出版信息

J Biomed Opt. 2024 Jun;29(Suppl 3):S33309. doi: 10.1117/1.JBO.29.S3.S33309. Epub 2024 Aug 21.

Abstract

SIGNIFICANCE

Monitoring oxygen saturation ( ) is important in healthcare, especially for diagnosing and managing pulmonary diseases. Non-contact approaches broaden the potential applications of measurement by better hygiene, comfort, and capability for long-term monitoring. However, existing studies often encounter challenges such as lower signal-to-noise ratios and stringent environmental conditions.

AIM

We aim to develop and validate a contactless measurement approach using 3D convolutional neural networks (3D CNN) and 3D visible-near-infrared (VIS-NIR) multimodal imaging, to offer a convenient, accurate, and robust alternative for monitoring.

APPROACH

We propose an approach that utilizes a 3D VIS-NIR multimodal camera system to capture facial videos, in which is estimated through 3D CNN by simultaneously extracting spatial and temporal features. Our approach includes registration of multimodal images, tracking of the 3D region of interest, spatial and temporal preprocessing, and 3D CNN-based feature extraction and regression.

RESULTS

In a breath-holding experiment involving 23 healthy participants, we obtained multimodal video data with reference values ranging from 80% to 99% measured by pulse oximeter on the fingertip. The approach achieved a mean absolute error (MAE) of 2.31% and a Pearson correlation coefficient of 0.64 in the experiment, demonstrating good agreement with traditional pulse oximetry. The discrepancy of estimated values was within 3% of the reference for of all 1-s time points. Besides, in clinical trials involving patients with sleep apnea syndrome, our approach demonstrated robust performance, with an MAE of less than 2% in estimations compared to gold-standard polysomnography.

CONCLUSIONS

The proposed approach offers a promising alternative for non-contact oxygen saturation measurement with good sensitivity to desaturation, showing potential for applications in clinical settings.

摘要

意义

监测血氧饱和度( )在医疗保健中很重要,特别是在诊断和管理肺部疾病方面。非接触式方法通过更好的卫生、舒适性和长期监测能力拓宽了 测量的潜在应用。然而,现有的研究经常遇到挑战,例如较低的信噪比和严格的环境条件。

目的

我们旨在开发和验证一种使用 3D 卷积神经网络(3D CNN)和 3D 可见-近红外(VIS-NIR)多模态成像的非接触式 测量方法,为 监测提供一种方便、准确和强大的替代方法。

方法

我们提出了一种方法,该方法利用 3D VIS-NIR 多模态相机系统来捕获面部视频,其中通过同时提取空间和时间特征,通过 3D CNN 来估计 。我们的方法包括多模态图像配准、3D 感兴趣区域跟踪、空间和时间预处理以及基于 3D CNN 的特征提取和回归。

结果

在一项涉及 23 名健康参与者的屏气实验中,我们获得了多模态视频数据,参考 值范围为 80%至 99%,由指尖脉搏血氧仪测量。该方法在实验中达到了 2.31%的平均绝对误差(MAE)和 0.64 的皮尔逊相关系数,与传统脉搏血氧仪具有良好的一致性。在所有 1 秒时间点,估计的 值与参考 值的差异在 3%以内。此外,在涉及睡眠呼吸暂停综合征患者的临床试验中,我们的方法表现出稳健的性能,与金标准多导睡眠图相比,估计值的 MAE 小于 2%。

结论

该方法为非接触式血氧饱和度测量提供了一种有前途的替代方法,对低饱和度具有良好的敏感性,在临床环境中具有应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd0e/11338290/5234ae062e2f/JBO-029-S33309-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验