Dingjan Tamir, Futerman Anthony H
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
Front Cell Dev Biol. 2024 Aug 7;12:1457209. doi: 10.3389/fcell.2024.1457209. eCollection 2024.
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
生物膜由脂质双层构成,其中镶嵌着整合膜蛋白。基于在膜中发现的脂质种类的组成复杂性,以及它们与膜蛋白的特异性和选择性相互作用,我们最近提出,膜双层最好被描述为“精细调节的分子机器”。我们现在通过描述在内质网膜中发生的鞘脂生物合成途径中运行的一种负反馈机制,来讨论一组这样的脂质 - 蛋白质相互作用,并描述该途径中的第一种酶,即丝氨酸棕榈酰转移酶,与该途径中第四种酶的产物神经酰胺之间的原子相互作用。我们探讨丝氨酸棕榈酰转移酶复合物中的Asn13和Phe63与神经酰胺之间形成的氢键和疏水相互作用如何影响内质网中的神经酰胺含量。这种精细调节的生化相互作用的例子提出了关于鞘脂及其生物合成酶如何进化的有趣机制问题,特别是考虑到它们的代谢相互依赖性。