Anderson Ross P, Mughal Sanaa, Wedlake George O
Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
All Souls College, University of Oxford, Oxford OX1 4AL, UK.
R Soc Open Sci. 2024 Aug 21;11(7):240154. doi: 10.1098/rsos.240154. eCollection 2024 Aug.
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
真核生物如今已经进化到在生物圈中占据主导地位,涵盖了大多数有记录的现存物种以及地球上绝大部分的生物量。因此,了解这些生物结构复杂的生物体在5.39亿多年前的元古宙最初是如何多样化的,是进化生物学中的一个基本问题。在过去的70年里,古生物学家一直试图通过化石证据来记录真核生物的兴起。然而,早期真核生物亚细胞特征的精细和微观性质使其保存潜力降低。真核生物的化学分子标志物特征以及现存真核生物的遗传学已成为重建真核生物祖先的补充工具。在这篇综述中,我们认为保存异常完好的元古宙微化石对于解释这些补充工具至关重要,为分子钟提供关键校准并检验古生态学假设。我们重点介绍了近期关于它们的保存和生物分子组成的研究,这些研究提供了增强其效用的新方法。