Guo Jia, Berenov Andrey, Skinner Stephen J
Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
International Institute for Carbon Neutral Energy Research, Kyushu University Fukuoka Japan.
Nanoscale Adv. 2024 Jul 8;6(17):4394-4406. doi: 10.1039/d4na00349g. eCollection 2024 Aug 20.
Exsolution, an innovative method for fabricating perovskite-based oxides decorated with metal nanoparticles, has garnered significant interest in the fields of catalyst fabrication and electrochemical devices. Although dopant exsolution from single perovskite structures has been extensively studied, the exsolution behaviour of double perovskite structures remains insufficiently understood. In this study, we synthesized B-site double perovskite Ru-doped lanthanum nickel titanates with a 7.5 at% A-site deficiency, and systematically investigated the exsolution process that formed nickel metal nanoparticles on the material surface, across a broad reduction temperature range of 350-1000 °C. Both and characterization revealed that small, uniform Ni nanoparticles exsolved at low temperatures, whereas the exsolution of ruthenium required higher reduction temperatures beyond 1000 °C. Within the reduction temperature range of 350-500 °C, a notable finding is the reconstruction of exsolved nanoparticles, implying that Ni particles exist in a thermodynamically metastable state. Electrochemical impedance spectroscopy (EIS) showed a decreased area specific resistance (ASR) during the progress of exsolution. The increase in current density of a full solid oxide cell (SOC) in electrolysis mode and the doubling of peak power density in fuel cell mode attributed to the exsolution of Ni nanoparticles highlight the potential application of metal exsolution in electrode materials for SOCs.
析出现象,一种用于制备负载金属纳米颗粒的钙钛矿基氧化物的创新方法,在催化剂制备和电化学器件领域引起了广泛关注。尽管从单钙钛矿结构中析出掺杂剂的现象已得到广泛研究,但双钙钛矿结构的析出现象仍未得到充分理解。在本研究中,我们合成了具有7.5 at% A位缺陷的B位双钙钛矿Ru掺杂的镧镍钛酸盐,并在350 - 1000 °C的宽还原温度范围内,系统地研究了在材料表面形成镍金属纳米颗粒的析出过程。 和 表征均表明,低温下析出了小尺寸、均匀的Ni纳米颗粒,而钌的析出需要超过1000 °C的更高还原温度。在350 - 500 °C的还原温度范围内,一个显著的发现是析出的纳米颗粒发生了重构,这意味着Ni颗粒处于热力学亚稳态。电化学阻抗谱(EIS)显示在析出过程中面积比电阻(ASR)降低。全固态氧化物电池(SOC)在电解模式下电流密度的增加以及在燃料电池模式下峰值功率密度的翻倍,归因于Ni纳米颗粒的析出,这突出了金属析出在SOC电极材料中的潜在应用。 (注:原文中“Both and characterization”这里的两个“ ”部分内容缺失,无法准确翻译完整)