Suppr超能文献

胶体球形辉锑矿颗粒 高温金属有机合成

Colloidal spherical stibnite particles high-temperature metallo-organic synthesis.

作者信息

Joschko Maximilian, Malsi Christina, Rapier John, Scharmann Paolo, Selve Sören, Graf Christina

机构信息

Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie- und Biotechnologie Stephanstr. 7 D-64295 Darmstadt Germany

Technische Universität Berlin, Zentraleinrichtung Elektronenmikroskopie (ZELMI) Straße des 17. Juni 135 D-10623 Berlin Germany.

出版信息

Nanoscale Adv. 2024 Jul 11;6(17):4450-4461. doi: 10.1039/d4na00020j. eCollection 2024 Aug 20.

Abstract

Antimony trisulfide (SbS) is an emerging semiconductor with a high absorption coefficient and a bandgap in the visible range. This makes it a promising material for various electronic and optoelectronic applications. However, one of the main challenges is still the synthesis of the material, as it is usually obtained either as a nanomaterial in its amorphous form with inferior optical properties or in crystalline rod-like structures in the micrometer or sub-micrometer range, which leads to application-related difficulties such as clogging in inkjet printing or spraying processes or highly porous layers in film applications. In this study, a one-pot synthesis of highly crystalline, spherical SbS sub-micron particles is presented. The particles are growing encapsulated in a removable, wax-like matrix that is formed together with an intermediate from the precursors SbCl and l-cysteine. Both substances are insoluble in the reaction mixture but well-dispersable in the solvent 1-octadecene (ODE). The intermediate forms a complex crosslinked architecture whose basic building block consists of an Sb atom attached to three cysteine molecules Sb-S bonds. Embedded in the matrix consisting of excess cysteine, ODE, and chlorine, the intermediate decomposes into amorphous SbS particles that crystallize as the reaction proceeds at 240 °C. The final particles are highly crystalline, spherical, and in the sub-micron range (420 ± 100 nm), making them ideal for further processing. The encapsulation method could not only provide a way to extend the size range of colloidal particles, but in the case of SbS, this method circumvents the risk of carbonization of ligands or insufficient crystallization during the annealing of amorphous material.

摘要

三硫化二锑(SbS)是一种新兴的半导体,具有高吸收系数和可见光范围内的带隙。这使其成为各种电子和光电子应用的有前途的材料。然而,主要挑战之一仍然是材料的合成,因为它通常以非晶形式的纳米材料获得,光学性能较差,或者以微米或亚微米范围内的结晶棒状结构获得,这会导致与应用相关的困难,如喷墨印刷或喷涂过程中的堵塞,或薄膜应用中的高度多孔层。在本研究中,提出了一种一锅法合成高度结晶的球形SbS亚微米颗粒。颗粒在一种可去除的蜡状基质中生长,该基质与前体SbCl和l-半胱氨酸形成的中间体一起形成。这两种物质都不溶于反应混合物,但可很好地分散在溶剂1-十八烯(ODE)中。中间体形成一种复杂的交联结构,其基本结构单元由一个与三个半胱氨酸分子相连的Sb原子(Sb-S键)组成。嵌入由过量半胱氨酸、ODE和氯组成的基质中,中间体分解成非晶态SbS颗粒,随着反应在240℃下进行而结晶。最终的颗粒高度结晶、呈球形且在亚微米范围内(420±100nm),使其非常适合进一步加工。这种封装方法不仅可以提供一种扩展胶体颗粒尺寸范围的方法,而且对于SbS来说,这种方法避免了配体碳化或非晶材料退火过程中结晶不足的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c140/11334972/fb4fca50caf4/d4na00020j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验