Yin Rui, Zhao Hongru, Li Lu, Yang Qiang, Zeng Min, Yang Carl, Bian Jiang, Xie Mingyi
Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA.
Comput Struct Biotechnol J. 2024 Jul 18;23:3020-3029. doi: 10.1016/j.csbj.2024.07.014. eCollection 2024 Dec.
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics. The Gra-CRC-miRTar web server can be found at: http://gra-crc-mirtar.com/.
结直肠癌(CRC)是全球第三大最常被诊断出的癌症,也是第二大致命癌症,是一个重大的公共卫生问题。近年来,越来越多的证据表明,微小RNA(miRNA)可以通过降低其丰度或翻译来控制靶向人类信使RNA(mRNA)的表达,在包括CRC在内的各种癌症中充当癌基因或肿瘤抑制因子。由于CRC中致癌miRNA的显著上调,阐明其潜在机制并识别失调的miRNA靶点可能为改善当前的治疗干预措施提供依据。在本文中,我们提出了Gra-CRC-miRTar,这是一种预训练的核苷酸到图神经网络框架,用于识别CRC中的潜在miRNA靶点。与以往的研究不同,我们构建了两个预训练模型来编码RNA序列并将其转换为德布鲁因图。我们采用不同的图神经网络来学习潜在表示。然后将从德布鲁因图生成的嵌入输入到多层感知器(MLP)中以执行预测任务。我们广泛的实验表明,Gra-CRC-miRTar比其他深度学习算法和现有预测器具有更好的性能。此外,我们的分析还通过CRC中经过实验验证的miRNA-mRNA对成功揭示了201种功能相互作用中的172种。总的来说,我们的工作提供了一个准确有效的框架来识别CRC中的潜在miRNA靶点,该框架也可用于揭示其他恶性肿瘤中的miRNA靶点相互作用,促进新型疗法的开发。Gra-CRC-miRTar网络服务器可在以下网址找到:http://gra-crc-mirtar.com/ 。