School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
The Connecticut Agricultural Experiment Station, New Haven06511, Connecticut, United States.
ACS Nano. 2024 Sep 17;18(37):25552-25564. doi: 10.1021/acsnano.4c06047. Epub 2024 Aug 22.
During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated abundance benefited caterpillar growth with RP, while the reduction of with HC increased the risk of lipid metabolism issues and gut disease. The recruited in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.
在农业生产过程中,通过叶面喷洒可能会有大量的铜基纳米农药(CBNP)释放到陆地生态系统中,从而通过食物链对生物传播构成潜在风险。因此,我们研究了两种常见的商业 CBNP,Reap2000(RP)和 HolyCu(HC)在植物-毛毛虫陆地食物链中的营养传递,并评估了其对宿主微生物群的影响。在叶面暴露(进行 4 轮喷洒,每株植物共喷洒 6.0 毫克 CBNP)后,叶片中铜的积累水平分别为 RP 和 HC 的 726 ± 180 和 571 ± 121 mg kg。与 RP 相比,HC 穿透角质层的能力较弱(RP:55.5%;HC:32.8%),这可能是由于尺寸排除限制。尽管毛毛虫积累了更多的 RP,但 HC 的营养传递因子(TTF)略高(RP:0.69 ± 0.20;HC:0.74 ± 0.17,> 0.05),并且更有可能通过食物链传递。RP 的应用促进了叶际微生物的扩散,并扰乱了宿主原有的肠道微生物群,而 HC 组则主要受宿主调节(对照:65%;RP:94%;HC:34%)。整合多组学分析和建模方法,我们阐明了植物对毛毛虫健康产生自上而下控制的两种途径。除了叶际微生物的直接传递外,暴露于 CBNP 后招募的叶片微生物组还通过改变叶片代谢物进一步影响毛毛虫的取食行为和肠道微生物群。RP 增加了丰度,有利于毛毛虫的生长,而 HC 减少了丰度,增加了脂质代谢问题和肠道疾病的风险。在 RP 叶际中大量增殖的招募微生物进一步扩展到毛毛虫的肠道中,以增强其抗应激能力。总的来说,在 RP 毛毛虫体内重塑的肠道微生物对宿主健康产生了强烈的调节作用。这些发现扩展了我们对叶面 CBNP 暴露后宿主-微生物群相互作用动态传递的理解,并为确保纳米农业策略的安全性和可持续性提供了必要的关键见解。