Suppr超能文献

基于弹性环烯烃共聚物的新型热塑性微阀。

Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer.

机构信息

Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.

Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA.

出版信息

Lab Chip. 2024 Sep 10;24(18):4422-4439. doi: 10.1039/d4lc00501e.

Abstract

Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells immunophenotyping with ALL-specific markers.

摘要

微流控系统将多个处理步骤和组件结合在一起,以自主方式进行复杂的分析。为了将多个生物分析处理步骤集成到单个系统中,阀被用作一种组件,用于引导流体并控制样品和试剂的引入。虽然弹性体聚二甲基硅氧烷一直是阀的首选材料,但它不适用于需要廉价和快速生产的一次性集成系统。作为聚二甲基硅氧烷的替代材料,我们引入了一种由热塑性弹性体环状烯烃共聚物 (eCOC) 制成的膜,该膜具有用于制造可靠阀的独特属性。eCOC 膜可以通过挤出或注塑成型来实现廉价阀的大规模生产。通常疏水的 eCOC 可以通过 UV/臭氧处理来产生稳定的亲水单层。在 eCOC 膜和热塑性阀座的 UV/臭氧激活后组装阀,并在室温下通过层压进行键合。eCOC 与聚碳酸酯 (PC) 和聚对苯二甲酸乙二醇酯二醇 (PETG) 形成强键合,能够分别承受 75 kPa 和 350 kPa 的高流体压力。我们对 eCOC 阀进行了机械和气动致动特性的表征,发现阀可以在没有故障的情况下重复致动 >50 次。最后,使用带有 eCOC 阀的集成系统从儿科急性淋巴细胞白血病 (ALL) 患者的血液样本中检测微小残留病 (MRD)。该双模块集成系统通过亲和选择 CD19(+)细胞并使用 ALL 特异性标志物对白血病细胞进行免疫表型分析来评估 MRD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ef/11339931/d7f09b65aa06/d4lc00501e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验