Suppr超能文献

通过电子光散射在空间受限固体中产生热量。

Heat generation in spatially confined solids through electronic light scattering.

作者信息

Kharintsev Sergey S, Battalova Elina I

机构信息

Department of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 16a, Kazan, 420008, Russia.

出版信息

Nanophotonics. 2025 Jun 19;14(14):2411-2418. doi: 10.1515/nanoph-2025-0118. eCollection 2025 Jul.

Abstract

This study focuses on the optical heating of spatially dispersive solids due to electronic light scattering (ELS), a phenomenon driven by indirect optical transitions. In this process, a light-illuminated spatial heterogeneity generates an optical near-field photon with expanded momentum and thereby electron-photon momentum matching can be fulfilled. It results in indirect optical transitions which contribute to broadband inelastic emission, a physical process known as electronic light scattering or Compton scattering of visible photons. This is followed by thermalization of the electron system, making the solids to heat up and eventually melt. We experimentally demonstrate this effect by optical melting a spatially confined semiconductor (Si) and metal (Au) under moderate continuous-wave laser illumination with the intensity of only a few MW/cm. We claim that ELS represents the dominant physical mechanism governing the interaction of light with spatially dispersive media, underpinning a broad range of thermo-optical phenomena and applications.

摘要

本研究聚焦于由电子光散射(ELS)导致的空间色散固体的光学加热,这是一种由间接光学跃迁驱动的现象。在这个过程中,光照产生的空间异质性会产生一个具有扩展动量的光学近场光子,从而实现电子 - 光子动量匹配。这会导致间接光学跃迁,进而产生宽带非弹性发射,这一物理过程被称为可见光子的电子光散射或康普顿散射。随后是电子系统的热化,使固体升温并最终熔化。我们通过在仅几兆瓦/平方厘米强度的适度连续波激光照射下,对空间受限的半导体(硅)和金属(金)进行光学熔化,实验证明了这种效应。我们认为,电子光散射是支配光与空间色散介质相互作用的主要物理机制,支撑了广泛的热光现象和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1120/12273542/3cede9b0d9f9/j_nanoph-2025-0118_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验